Present and Future Prospect of Algae: A Potential Candidate for Sustainable Pollution Mitigation

The Open Biotechnology Journal 27 Aug 2021 REVIEW ARTICLE DOI: 10.2174/1874070702115010142


Pollution control and mitigation are critical to protect the ecosystem and make everyone's life safer and healthier. Different pollution mitigation strategies and measures are implemented to remove pollutants, which broadly involve physical, chemical, and biological methods. Biological methods are found to be more sustainable, effective, and eco-friendlier than the other two methods. These methods mainly use microbes like bacteria, fungi, algae, and plants, and their products like enzymes and metabolic products to remove pollutants. Due to their unique photosynthetic ability and simple growth requirements, Algae can be grown using simpler components like CO2, sunlight, and media, making them a potential candidate to be used as a pollution mitigator. Algae can indicate and remove pollutants like CO2, SO2, NO2, and particulate matter from the air; these pollutants and particulate matter are either used for their growth or these are accumulated inside them.. Algal species have shown the efficient removal of heavy metals, organic pollutants, explosives, petroleum contaminants, pesticides, polycyclic aromatic hydrocarbons (PAHs), and plastics from different water sources. There is a lot of scope in using algae to remove organic and inorganic pollutants in wastewater treatment plants. Algae hold great potential to remove radioactive pollutants from natural resources and involve removal mechanisms like biosorption and bioaccumulation. Algae can be used with different adsorbent materials to develop adsorption systems for the adsorption of radionuclides and heavy metals. This review elucidates different algal species, their cultural conditions, the removal efficiency of different types of pollutants from the air, water, soil, and their role in genetic engineering and the algae's potential for waste mitigation.

Keywords: Algae, Pollution, Mitigation, Sustainable, Wastewater, Polycyclic aromatic hydrocarbons.
Fulltext HTML PDF ePub