All published articles of this journal are available on ScienceDirect.
Biosynthesis and Characterization of Silver Nanoparticles Using Phoenix dactylifera Fruits Extract and their In Vitro Antimicrobial and Cytotoxic Effects
Abstract
Background:
In this article, silver nanoparticles (AgNPs) were synthesized by the biological green technique, using the aqueous extracts obtained from fruits of Phoenix dactylifera (date palm). This method is simple, rapid, non-toxic, and sustainable, and substitutes for the conventional physical/chemical methods. The cytotoxic activities of AgNPs derived from date fruit extract have not been mentioned in the earlier studies.
Methods:
The biosynthesized AgNPs are analyzed by Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis), and Transmission Electron Microscopy (TEM) methods. The assessment of antimicrobial effect towards human pathogenic microbial strains and their potential cytotoxicity against human breast cancer cell lines (MCF-7) were also evaluated.
Results:
FT-IR spectral studies showed that phytomolecules such as carbohydrates, phenolic acids and flavonoids present in date fruits extract are involved in the reduction and capping of the AgNPs. UV-vis spectrum revealed Surface Plasmon Resonance (SPR) at 425 nm which attributes the presence of AgNPs in aqueous extract. TEM micrographs showed that AgNPs particle diameter is ranged from 20 nm to 100 nm with spherical morphology. The biosynthesized AgNPs exhibited significant antimicrobial activity towards human microbial strains. Phytosynthesized NPs also induce cytotoxicity via necrosis, apoptosis and mitodepressive mechanisms that can disturb the cellular components at various stages of cell cycle.
Conclusion:
The present study concludes that biologically synthesized AgNPs using Phoenix dactylifera is cost-effective, rapid, non-toxic, and sustainable and can be effectively used as an adjunct for the treatment of breast carcinoma.