RESEARCH ARTICLE


Optimization of Cellulase Production by Aspergillus niger Isolated from Forest Soil



Srilakshmi Akula, Narasimha Golla*
Applied Microbiology Laboratory, Department of Virology, Sri Venkateswara University, Tirupati-517502 Andhra Pradesh, India


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 729
Abstract HTML Views: 498
PDF Downloads: 254
ePub Downloads: 246
Total Views/Downloads: 1727
Unique Statistics:

Full-Text HTML Views: 479
Abstract HTML Views: 301
PDF Downloads: 187
ePub Downloads: 153
Total Views/Downloads: 1120



© 2018 Akula and Golla.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Virology, Sri Venkateswara University, Tirupati-517502 Andhra Pradesh, India, Tel: 9849781818; E-mail: gnsimha123@rediffmail.com


Abstract

Background:

An impressive increase in the application of cellulases in various fields over the last few decades demands extensive research in improving its quality and large-scale production. Therefore, the current investigation focuses on factors relevant for optimal production of cellulase by Aspergillus niger isolated from forest soil.

Method:

Throughout this study, the fungal strain Aspergillus niger was maintained under the submerged condition for a period of 7 days at 120 rpm rotational speed. Various physical and chemical conditions were employed in examining their influence on cellulase production by the selected fungal strain. After appropriate incubation, culture filtrates were withdrawn and checked for FPase, CMCase, and β-D-glucosidase activities.

Results:

The optimum pH and temperature for cellulase production were found to be 5.0 and 32°C, respectively. Among the various carbon sources tested in the present study, amendment of lactose in the medium yielded peak values of FPase (filter paperase) and CMCase (Carboxy-methyl cellulase) whereas fructose supported the higher titers of β-glucosidase. Among the nitrogen sources, profound FPase and CMCase activity were recorded when urea was used but higher β-glucosidase activity was noticed when yeast extract was added. Various natural lignocellulosic substrates like bagasse, coir, corncob, groundnut shells, litter, rice bran, rice husk, sawdust and wheat bran were tested to find out the induction of cellulase. Among the lignocelluloses, sawdust and litter served as good substrates for cellulase production by Aspergillus niger.

Conclusion:

In gist, the outcome of this study sheds light on the cellulolytic potentiality of the fungal strain Aspergillus niger promising in its future commercial applications which may be economically feasible.

Keywords: Forest soil, Aspergillus niger, Cellulase, Lignocelluloses, Optimization conditions, Fungal strain.