REVIEW ARTICLE


Immobilization of Cholesterol Oxidase: An Overview



Shubhrima Ghosh, Razi Ahmad, Sunil Kumar Khare*
Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 833
Abstract HTML Views: 554
PDF Downloads: 212
ePub Downloads: 255
Total Views/Downloads: 1854
Unique Statistics:

Full-Text HTML Views: 512
Abstract HTML Views: 296
PDF Downloads: 164
ePub Downloads: 122
Total Views/Downloads: 1094



© 2018 Ghosh et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; Tel: +911126596533; Fax +911126581102; E-mails: skkhare@chemistry.iitd.ac.in, skhare@rocketmail.com


Abstract

Background:

Cholesterol oxidases are bacterial oxidases widely used commercially for their application in the detection of cholesterol in blood serum, clinical or food samples. Additionally, these enzymes find potential applications as an insecticide, synthesis of anti-fungal antibiotics and a biocatalyst to transform a number of sterol and non-sterol compounds. However, the soluble form of cholesterol oxidases are found to be less stable when applied at higher temperatures, broader pH range, and incur higher costs. These disadvantages can be overcome by immobilization on carrier matrices.

Methods:

This review focuses on the immobilization of cholesterol oxidases on various macro/micro matrices as well as nanoparticles and their potential applications. Selection of appropriate support matrix in enzyme immobilization is of extreme importance. Recently, nanomaterials have been used as a matrix for immobilization of enzyme due to their large surface area and small size. The bio-compatible length scales and surface chemistry of nanoparticles provide reusability, stability and enhanced performance characteristics for the enzyme-nanoconjugates.

Conclusion:

In this review, immobilization of cholesterol oxidase on nanomaterials and other matrices are discussed. Immobilization on nanomatrices has been observed to increase the stability and activity of enzymes. This enhances the applicability of cholesterol oxidases for various industrial and clinical applications such as in biosensors.

Keywords: Cholesterol oxidase, Immobililization, Nanoparticles, Enzyme, Biocatalysis, Biosensors.