All published articles of this journal are available on ScienceDirect.
Benzalkonium Chloride Sterilization of Nonwoven Fibrous Scaffolds for Astrocyte Culture
Abstract
Tissue engineering is an emerging field in biomedicine, holding enormous promise for regenerative medicine. Scaffolds, within which cells proliferate, are a controlling factor in tissue engineering applications. Upon fabrication, tissue scaffolds must undergo appropriate sterilization to eliminate contaminants. Current sterilization methods are either costly, time consuming, or ineffective. In this study, a quaternary salt, benzalkonium chloride (BAC), was used as a chemical agent for sterilization of nonwoven polyethylene terephthalate (PET) fibers and polylactic acid nanofibers. Treating the PET scaffolds with 0.1% (w/v) BAC for only 2 minutes was effective to eliminate bacterial contaminants in the fibrous matrices. In addition, astrocyte cells were successfully cultured in the PET scaffolds following BAC sterilization, demonstrating the suitability of BAC as a sterilization agent. This chemical sterilization method is also mild and nonabrasive to nanostructured materials such as electrospun polylactic acid nanofibers.