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Abstract:

Brown seaweeds are rich in bioactive polysaccharides such as laminarin, fucoidan, and alginate, which exhibit a wide
range of biological activities and hold great potential for applications in the functional food and nutraceutical
industries. In recent years, there has been a growing interest in developing advanced and sustainable extraction
techniques to improve the recovery of these valuable compounds. While conventional methods - including Soxhlet
extraction, hydrodistillation, and maceration - are still commonly used, they are often time-consuming, inefficient,
and environmentally taxing. In contrast, innovative techniques such as enzyme-assisted extraction (EAE), microwave-
assisted extraction, and ultrasound-assisted extraction offer faster, more selective, and eco-friendly alternatives.
Among these, EAE has emerged as a particularly promising approach due to its efficiency, mild operating conditions,
and ability to preserve the integrity of thermolabile compounds. However, challenges related to enzyme stability and
reusability limit its industrial application. To address these issues, enzyme immobilisation has been explored, with
magnetic nanoparticles (MNPs) gaining considerable attention as effective supports due to their large surface area,
biocompatibility, and ease of magnetic separation. This review provides an overview of the biology of brown
seaweeds and their major bioactive polysaccharides, followed by a critical evaluation of enzyme immobilisation
methods. Particular emphasis is placed on the use of MNPs as supports for immobilised enzymes in the context of
polysaccharide extraction. The integration of immobilised enzymes with green extraction technologies offers a
promising route toward more efficient, sustainable, and scalable recovery of marine-derived bioactives.
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Magnetic nanoparticles, Green extraction methods.
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1. INTRODUCTION

In recent decades, there has been a growing awareness
of the link between diet and overall well-being, resulting in
increased consumer demand for food products that deliver
health-promoting effects beyond their basic nutritional roles
[1]. This trend has driven the global food industry to
develop functional foods that cater to health-conscious
consumers [2]. In response to growing consumer demand
for health-enhancing products, bioactive compounds from
natural sources - particularly those derived from plants -
have been increasingly explored for applications in the food,
cosmetic, and pharmaceutical industries [3]. Within this
context, marine algae - especially seaweeds - have
attracted significant attention as a rich and sustainable
source of bioactive compounds with diverse physiological
effects. Their potential aligns closely with the development
of functional foods, which are defined as conventional,
fortified, or enriched food products that, when consumed
regularly in adequate amounts, offer health benefits beyond
basic nutritional needs, such as contributing to disease
prevention or overall well-being [4].

Seaweeds are macroscopic marine algae that have been
part of human history for approximately 14,000 years [5].
These large, non-vascular marine plants are visible to the
naked eye and exhibit a wide range of morphologies.
According to Guiry & Guiry [6], around 177,142 seaweed
species have been identified, varying greatly in shape and
size. Seaweeds are commonly classified based on their
pigmentation into three major groups: brown, red, and
green algae [7, 8]. They are rich in chemical constituents
such as carbohydrates, proteins, polyunsaturated fatty
acids, minerals, polyphenols, and pigments - many of which
exhibit diverse biological activities. Notably, carbohydrates
constitute roughly 76% of seaweed biomass, highlighting
their potential as a key functional ingredient [9].

Numerous studies have demonstrated the health-
promoting effects of seaweed-derived compounds, including
antioxidant, anticancer, antidiabetic, antimicrobial, anti-
coagulant, antiviral, anti-tumor, anti-inflammatory, immuno-
modulatory, prebiotic, and cholesterol-lowering activities
[9]. Despite this, the role of brown seaweeds as prebiotics
has received relatively limited attention in the literature,
with only a few studies addressing this topic [10-13]. More
comprehensive discussions can be found in the reviews by
O’Sullivan [14] and de Jesus Raposo et al. [15]. Although in
vitro studies have demonstrated the prebiotic potential of
brown seaweeds, their broader recognition as prebiotic
agents has been hindered by a lack of extensive in vivo
evidence, limited human clinical trials, and minimal
commercial utilization of brown seaweed-derived poly-
saccharides [16].

Beyond their health benefits, seaweeds have garnered
increasing interest as a sustainable resource due to their
rapid growth and minimal input requirements - unlike
terrestrial crops, they do not require arable land, fresh
water, or synthetic fertilizers [17]. Seaweed farming is
now practiced in approximately 50 countries, and in 2014
alone, 28.5 million tons of seaweed and related algae were
harvested for direct consumption or as raw material for
hydrocolloids, fertilizers, and other industrial products
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[18]. In Malaysia, seaweed has been recognized as a
strategic commodity under the National Agro-Food Policy
2011-2020, with Sabah, located on the eastern coast,
serving as the primary center of national production [19,
20].

Given the vast biological potential of seaweed-derived
compounds, there has been considerable interest in their
extraction and characterization. Various extraction tech-
niques have been employed to obtain bioactive substances
from seaweeds for use in food, cosmetic, pharmaceutical,
and other applications. Conventional methods such as
Soxhlet extraction, hydro-distillation, and maceration have
been widely used [21]. More recently, novel and sustainable
extraction approaches - such as enzyme-assisted extraction
(EAE), microwave-assisted extraction, ultrasound-assisted
extraction, supercritical fluid extraction, and accelerated
solvent extraction - have been developed. These methods
often enhance extraction efficiency while reducing reliance
on harsh chemicals and solvents [22]. This mini-review aims
to provide an overview of current knowledge on bioactive
polysaccharides derived from brown seaweeds, with
emphasis on their extraction using enzyme-assisted tech-
niques and the emerging application of magnetic
nanoparticle-based enzyme immobilization systems.

2. METHODOLOGY: DATA MINING & SEARCH
STRATEGY

The literature search was conducted using Google
Scholar and ScienceDirect, applying predefined search
terms such as Sargassum, brown seaweed polysaccharides,
extraction, immobilization, and nanoparticles. The search
was limited to English-language, peer-reviewed original and
review articles published between 1975 and 2025, to
capture both early foundational studies and more recent
advances. Relevant articles were then selected based on
their scope and quality for inclusion in this review.

3. MARINE MACROALGAE

The term ‘algae’ refers to a diverse group of
polyphyletic, mostly photosynthetic organisms with
diverse origins, evolutionary lines, and biochemistry.
Algae taxonomy is presently undergoing reassessment and
enhancement through the application of molecular
genetics. Practically, algae can be categorized into two
groups: multicellular marine organisms (macrophytes and
seaweeds) and unicellular or colonial microalgae that can
be found in many habitats such as seas, freshwater lakes,
rivers, ponds, and soil [23]. Seaweeds are macroalgae
found in maritime environments and have a significant
fossil record [5]. Seaweeds are typically categorized based
on their chemical and morphological characteristics,
particularly their pigmentation, which determines their
classification into one of three algal divisions: brown, red,
and green algae. Brown algae, also known as
Phaeophyceae, are the largest type of algae. It can appear
brown or yellow-brown owing to the presence of the
compound fucoxanthin. On the other hand, red algae, or
Rhodophyceae, display vibrant colors because of the
dominance of phycoerythrin and phycocyanin over other
pigments such as chlorophyll a, B-carotene, and various
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xanthophylls. Lastly, green algae, or Chlorophyceae,
possess chlorophyll a and b in the same proportion as
higher plants [7, 24].

3.1. Brown Seaweeds

Brown seaweeds are classified phylogenetically as
Chromista and Ochrophyta [6]. Brown seaweeds and
higher plants possess similar interesting characteristics,
such as totipotent cells and intercellular plasmodesmatic
connections, which play a vital role in the development of
multicellular organisms. Of the three primary categories of
seaweeds, the brown seaweed appears to be the most
influenced by climatic conditions, resulting in variations in
its characteristics depending on the geographical location
[25].

Brown seaweeds possess a gelatinous cell wall that
consists of two layers: an inner layer predominantly made
up of cellulose and an outer layer primarily formed of algin
and fucoidan. In addition, they contain amorphous
mucilaginous matrix fraction and mucilaginous alginates
[25]. Brown seaweeds possess phlorotannins, which are
halogenated and sulphated phenolic compounds found in
their cell walls [26]. The variations in cell wall composition
are not only noticeable between different species and
seasons, but even within the same thallus. The variations in
cell wall composition are not only noticeable between
different species and seasons, but even within the same
thallus. Brown seaweeds have a particularly large and
complex thallus, which is categorised into many growth
types: diffuse, apical, trichothallic, promeristem, inter-
calary, and meristoderm [27]. Fucoxanthin, a carotenoid
pigment, along with other compounds such as Phaeo-
phyceae tannins, B-carotene, chlorophyll a, c1, and c2,
diatoxanthin, violaxanthin, and substantial amounts of

4. BIOACTIVE POLYSACCHARIDES OF BROWN
SEAWEEDS

Brown seaweeds consist of three primary poly-
saccharides: laminarin, fucoidan, and alginate. Laminarin
(Fig. 1), also known as laminaran, is a type of water-soluble
polysaccharide [28]. It has a relatively small molecular
weight of around 5 kilodaltons. Laminarin is made up of B-
(1,3)-linked glucans with B-(1,6)-linked side chains. These
side chains have different distributions and lengths, often
consisting of about 20 to 25 glucose units [29]. These
compounds are located in the vacuoles of cells, make up
around 35% of the dry weight of brown seaweed, and serve
as storage polysaccharides [14, 22]. The seaweed species
that mostly contain laminarin are Laminaria, Saccharina,
Ascophyllum, and Fucus [30]. Studies have shown that
laminarin possesses antibacterial, immunomodulatory,
antioxidant, and anticoagulant activities [22, 31].

Fucoidans (Fig. 2), sometimes referred to as fucan or
fucosan, are a group of sulphated homo- and heteropoly-
saccharides mostly made up of a-(1,2)- and/or (1,3)-linked
fucose [32, 33]. These compounds can dissolve in water and
diluted acids, and their molecular weight ranges from 100
to 1600 kDa [31]. Fucoidans are abundant in brown
seaweed fibrillar cell walls and intercellular spaces. The
substitution of sulphates most commonly occurs at the C2
and C4 locations of L-fucopyranosyl residues, but not at the
C3 position [34]. Fucoidan extracts not only consist of
fucose, but also galactose, mannose, xylose, glucose, and
glucuronic acid [34]. Fucoidans are predominantly present
in the Fucaceae and Laminariaceae groups of algae, which
are found globally [35]. Fucoidans have demonstrated a
broad spectrum of bioactivity, including antiviral, anti-
inflammatory, immunomodulatory, antithrombotic, anti-

fucoxanthin, contribute to the brown coloration of brown coagulant, antioxidant, antitumor, antibacterial, and
seaweeds [25]. anticancer properties [31, 34, 36, 37].
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Fig. (1). Schematic depiction of the structure of laminarin. Source: Redrawn from the work of Kim et al. [28] using ChemDraw.
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Fig. (2). Fucoidan structure from Fucus vesiculosus. Source: Redrawn from the work of Peipei et al. [33] using ChemDraw.

Alginates (Fig. 3) are unbranched homopolymers
composed of B-D-mannuronic acid (M) and a-L-guluronic
acid (G). There are three distinct types of alginate blocks:
poly-M, poly-G, and alternating MG [38, 39]. Every type has
a unique arrangement of mannuronic acid and guluronic
acid in the alginate chain [40]. The chemical composition
and monomeric sequence of the extracted alginate differ
depending on the specific algae species, the portion of the
algae employed, the season, and the prevailing oceanic

conditions [41]. Alginates are plentiful in the cell walls of
brown seaweed [14]. Marine alginate is obtained from many
types of seaweed, including Phaeophyceae, Laminaria,
Ecklonia, Ascophyllum, Durvillaea, Lessonia, Macrocystis,
Sargassum, and Turbinaria [42]. They exhibit a well-
established gelling property in the presence of multivalent
cations or when the pH falls within the range of 3 to 4, and
the occurrence of gel formation is related to a significant
concentration of guluronic acid [43].
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Fig. (3). Molecular structure of alginate. Source: Redrawn from the work of Augst et al. [38] & Cong et al. [39] using ChemDraw.

5. EXTRACTION OF BIOACTIVE COMPOUNDS FROM
SEAWEEDS

5.1. Pre-treatment

Seaweed is typically harvested along the coast or on
beaches. The seaweed undergoes a rigorous washing
process to eliminate any salt, impurities, or epiphytes.
Before extraction, seaweeds undergo a process of drying
and milling to achieve uniform distribution of mass and a
greater surface-to-volume ratio [44]. Moreover, these pre-
treatments are crucial to prevent the co-extraction of
other bioactive compounds from seaweeds that have
similar solubility properties [45].

5.2. Conventional Extraction Techniques

Soxhlet extraction, hydro-distillation, and alcohol
maceration are conventional techniques used to extract
bioactive compounds [46]. Conventional extraction
methods are inefficient, time-consuming, energy-intensive,
and environmentally unfriendly. Furthermore, these
extraction methods are usually performed manually and
pose challenges in terms of reproducibility.

5.3. Innovative Extraction Techniques

The increasing demand for marine bioactive chemicals
has led to the rapid development of new extraction
procedures that are fast, specific, economical, productive,
and eco-friendly. Numerous novel extraction technologies
have the potential to meet many the requirements outlined
above. Enzyme-assisted extraction, microwave-assisted
extraction, ultrasound-assisted extraction, supercritical
fluid extraction, and accelerated solvent extraction are all
exemplifications of these techniques [47]. The objective of
this review is to thoroughly examine a novel and nontoxic
method termed enzyme-assisted extraction, as well as the
immobilisation of enzymes for extraction.

5.4. Enzyme-assisted Extraction

The composition of the cell wall in seaweed is quite
complex, consisting of a diverse range of polymeric bio-
molecules. These include sulphate and branched poly-
saccharides, as well as proteins and various bound ions like

calcium and potassium [48, 49]. The complex structure of
seaweed cell walls, along with their sturdy nature, presents
significant challenges when it comes to efficiently
extracting bioactive compounds. Enzyme-assisted extraction
(EAE) operates under the principle of utilizing enzymes to
break down the cell wall of seaweed, thereby simplifying
the process of extracting desired components from seaweed
materials. Research has demonstrated that certain
enzymes, such as carbohydrases and proteases, can
effectively break down the cell wall of seaweed and release
specific bioactive compounds. This process occurs under
specific temperature and pH conditions, as highlighted in a
study by Kadam et al. [22].

EAE is considered to be a safe and eco-friendly method
as it eliminates the need for solvents in the extraction
process. This technology is highly efficient in breaking
down cell walls and releasing valuable bioactive
compounds. In addition, it addresses challenges related to
the water solubility and insolubility of biologically active
compounds. This technology is a cost-effective method
that makes use of enzymes that are commonly present in
food. These enzymes include cellulase, a-amylase, and
pepsin [50]. EAE offers the benefits of high catalytic
efficiency while maintaining the original effectiveness of
the compounds to a considerable extent [51]. For optimal
extraction yield, protocols in the field emphasize the
significance of maintaining optimal treatment time and
temperature conditions for enzymes [50].

Although EAE offers several benefits, it also comes with
certain drawbacks. These include being sensitive to changes
in pH and temperature, having limited stability, and being
challenging to recover and reuse in a reaction system. As a
consequence, the use of EAE can lead to high operating
costs. Various techniques are employed to enhance enzyme
stability, such as immobilization, enzymatic modification,
and protein engineering. One widely used technique for
enhancing enzyme properties involves immobilization [52,
531.

Figure 4 presents a schematic representation of the
extraction stages for bioactive compounds from seaweeds,
encompassing conventional and innovative techniques with
their respective advantages and limitations.
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Fig. (4). Schematic representation of bioactive compound extraction from seaweed, highlighting pre-treatment, conventional and

innovative methods, with emphasis on EAE and associated trade-offs.

6. ENZYME IMMOBILISATION TECHNIQUES

Enzyme immobilisation aims to keep the enzyme
securely bound and confined within a physical medium,
thereby preserving its catalytic activity [53]. The
immobilization of enzymes offers several benefits. One
advantage is the convenience of handling the enzyme as a
solid rather than a liquid, which allows for easy separation
from the product and reduces or eliminates protein [54]. In
a recent study by Kalsoom et al. [55], it was found that
enzymes immobilized on nanoparticles exhibited a broader
range of pH and temperature tolerance, along with
enhanced thermal stability compared to their free form.
According to Cao [56], the fundamental characteristics of
immobilized enzymes are their simplicity, profitability, and
stability, which are highly valued in the industrial sector.
Figure 5 provides an overview of the various immobilization
methods currently in use.

Enzymes can be immobilized using two main methods:
physical and chemical. In the physical methods, enzymes
are immobilized onto different matrices by the use of forces
such as van der Waals forces, hydrophobic interactions, and
hydrogen bonding. Adsorption onto a support surface is the
simplest form of immobilization. The enzyme usually binds
to the support material through non-covalent linkages, such
as ionic and hydrophobic interactions, hydrogen bonding,
and van der Waals forces, without requiring any prior
activation of the support [57]. The adsorption method is
straightforward and does not require complex chemical
reactions, making it economically viable for large-scale

applications [58, 59]. While enzyme immobilization by
adsorption offers several advantages, such as simplicity and
cost-effectiveness, it is important to consider the potential
drawbacks, including enzyme leaching [60] and reduced
activity [61].

Entrapment involves the confinement of the enzyme
within a polymer matrix, such as gel or a membrane [58].
This allows for the penetration of substrates and products
while restricting the release of enzyme proteins [62].
Consequently, the application is restricted to processes
that only involve small substrates and products. Some of
the techniques employed include entrapment within gels
like polyacrylamide and calcium alginate, as well as
entrapment within hollow fibres or the microcavities of
synthetic fibres [62, 63]. Entrapment of the enzyme does
not involve any chemical modification, thereby resulting in
minimal alteration of the enzyme's properties. The method
has several constraints, such as enzyme leakage,
restrictions in mass transfer/diffusion due to the
movement of substrates and products via a barrier, and
the absence of stabilizing effects typically found in a solid
support [62, 64].

Microencapsulation is a technique used to immobilize
enzymes by encapsulating them within spherical, semi-
permeable polymer membranes with controlled porosity
typically ranging from 1 to 100 um [65]. These membranes
permit the selective transport of molecules, allowing
substrates to diffuse in and reaction products to diffuse
out while retaining the enzyme within the capsule [66].
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This selective permeability creates a controlled micro-
environment that enhances enzyme stability and catalytic
activity by protecting the enzyme from proteolytic de-
gradation and harsh external conditions [66-68].
Furthermore, the encapsulation matrix can modulate the
release of enzymes, thereby optimize substrate-enzyme
interaction and improving overall reaction efficiency [69].
Despite these advantages, microencapsulation also presents
certain limitations. Enzymes may desorb from the membrane
surface, leading to diminished catalytic availability [64].
Additionally, the mechanical integrity of the semi-permeable
membranes can be compromised under operational stresses,
resulting in rupture or degradation that may cause enzyme
leakage and a consequent loss of enzymatic activity [70].

In the chemical method, enzymes are permanently
attached to different matrices through covalent or ionic
bonds [71]. Covalent binding is considered the most secure
approach for immobilizing enzymes. Enzyme molecules can
be attached to reactive groups on the carrier, such as
hydroxyl, amide, amino, or carboxyl groups [71].
Alternatively, a spacer arm can be artificially attached to
the carrier through different chemical reactions, like
diazotization, Schiff base, or imine bond formation. Non-
essential amino acid residues (other than active site groups)
of the enzyme participate in the formation of a covalent
bond, resulting in minimal conformational alterations. It is
worth noting that immobilized enzymes via covalent and
ionic bonding exhibit greater resistance to various physical
and chemical conditions, such as temperature fluctuations,

Entrapment

Microencapsulation

o
s/

- Suppor =
Conjugation by Affinity Ligand

Cross-linking

denaturants, and organic solvents [72, 73]. Nevertheless,
due to the rigorous immobilization conditions and the
existence of identical amino groups at the enzyme's active
site while in contact with the matrix, this particular method
of immobilization places an increased strain on the enzyme
and occasionally leads to significant alterations in both its
conformational and catalytic properties [73].

Cross-linking is an immobilization technique that
involves the formation of covalent bonds between enzyme
molecules and a supporting matrix using bi- or multi-
functional reagents, resulting in the creation of a three-
dimensional network known as cross-linked enzyme
aggregates (CLEAs) [74]. This process is commonly
facilitated by bifunctional agents such as glutaraldehyde,
which reacts with amino groups on the enzyme surface to
form stable linkages [59, 75]. Glutaraldehyde oligomers,
formed via aldol condensation, can further enhance enzyme
activity by forming additional cross-links, thereby improving
the structural integrity and catalytic performance of the
immobilized enzyme [75]. The primary advantages of CLEA
technology include its operational simplicity, enhanced
enzyme reusability, and improved thermal and chemical
stability [60, 74, 76]. However, certain limitations remain.
The use of harsh cross-linking conditions or excessive
reagent concentrations can induce enzyme denaturation,
adversely affecting catalytic activity and substrate
specificity [77]. Moreover, the dense structure of CLEAs
may result in internal mass transfer limitations, thereby
reducing the overall reaction efficiency. Addressing these
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challenges is essential for optimizing the practical appli-
cation of CLEAs in biocatalytic processes [77].

Ionic binding involves the electrostatic interaction
between charged enzyme molecules and oppositely charged
support matrices. This approach is facilitated by various
materials, including ionic liquids (ILs), which can function
as additives, linkers, or surface modifiers. ILs play a critical
role in modulating enzyme-support interactions, thereby
influencing enzyme stability, activity, and overall
immobilization efficiency [78, 79]. Inorganic materials such
as silica are frequently employed due to their high surface
area, mechanical strength, and compatibility with both ionic
and covalent immobilisation strategies [80]. Similarly,
synthetic polymers like polyamides offer a conducive
environment for enzyme immobilisation via ionic inter-
actions, supporting enzyme stability and activity [71].
Enzymes immobilized through ionic binding can be readily
separated from reaction mixtures, facilitating their reuse in
continuous or batch processing systems. This recyclability
contributes to reduced enzyme consumption and lowers
operational costs in industrial applications [70, 81].
However, ionic interactions can sometimes induce confor-
mational changes in the enzyme, particularly around the
active site, potentially diminishing catalytic performance
[79]. Furthermore, the binding process may compromise
enzyme structural integrity over time, leading to a gradual
loss of functionality [58]. In addition, not all enzymes
interact favorably with ionic supports, which can limit the
broad applicability of this immobilization technique [70].

Affinity immobilisation offers an alternative strategy for
enzyme immobilisation by exploiting specific interactions
between the enzyme and an affinity ligand. Common
systems include biotin-avidin and metal chelate-histidine
tag interactions, which enable strong and selective binding
of the enzyme to the support matrix [82, 83]. These highly
specific interactions minimise the risk of random immo-
bilisation and reduce the likelihood of active site
obstruction, a common drawback in conventional immo-
bilisation techniques [83]. This method is particularly
advantageous in applications requiring high sensitivity and
specificity, such as biosensor development, where the
stability and functional integrity of the immobilised enzyme
are essential for accurate detection [84]. The strong affinity
bonds formed during immobilisation enhance enzyme
stability, prevent leaching, and support reusability over
multiple operational cycles. Furthermore, affinity immo-
bilisation allows for oriented enzyme attachment,
preserving catalytic activity and improving performance in
both analytical and industrial applications [82]. However,
the widespread adoption of this technique is limited by
challenges such as the high cost of affinity ligands and the
potential for steric hindrance, which may affect enzyme
conformation and activity [85]. Addressing these limitations
is crucial to expanding the applicability of affinity-based
immobilisation systems.

7. MAGNETIC NANO-SUPPORTS FOR ENZYME
IMMOBILIZATION

Nanoparticles are defined as discrete entities with
dimensions of 100 nm or less in all three spatial directions.
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Their unique physicochemical properties, distinct from
those of bulk materials, have enabled their broad appli-
cation across various fields [86]. Among these, magnetic
nanoparticles (MNPs) have emerged as promising
platforms for enzyme immobilisation, offering a combi-
nation of features that enhance enzyme activity, stability,
and reusability.

MNPs are typically composed of magnetic elements
such as iron, cobalt, and nickel, or their corresponding
oxides and compounds. In particular, iron oxide nano-
particles - magnetite (Fe,O,) and maghemite (y-Fe,O,) -
have been widely utilised due to their biocompatibility and
superparamagnetic behaviour [87]. Enzyme immo-
bilisation on MNPs can be achieved through various
methods, including physical adsorption, encapsulation,
covalent bonding, and cross-linking. Physical adsorption is
a simple, reversible technique relying on non-covalent
interactions, whereas encapsulation involves trapping
enzymes within a polymer matrix on the nanoparticle
surface, offering structural protection and stability [88,
89]. Covalent immobilisation, on the other hand, forms
stable linkages between enzyme functional groups and
activated surfaces of MNPs, ensuring strong attachment
and reduced leaching [90, 91]. Cross-linking techniques,
often employing agents such as glutaraldehyde, can create
networks of enzyme aggregates on the nanoparticle
surface, further enhancing stability and reusability [87,
92].

The high surface-area-to-volume ratio of MNPs
facilitates increased enzyme loading, thereby improving
catalytic efficiency [93]. Surface modification strategies -
such as silanization with 3-aminopropyl-triethoxysilane
(APTES) - enhance enzyme binding, maintain activity
across broad pH and temperature ranges, and improve
operational robustness [87, 93]. As a result, enzymes
immobilised on MNPs often exhibit enhanced thermal and
operational stability, extended functional lifespans, and
reduced degradation over repeated use cycles, making
them well-suited for industrial bioprocesses [94, 95].

A major advantage of MNP-based systems lies in their
superparamagnetic nature, which allows for rapid and
efficient separation of immobilised enzymes from reaction
mixtures using an external magnetic field. This simplifies
the recovery and recycling process, reducing operational
costs and contamination risks [96]. To further improve
biocompatibility and prevent oxidation, MNPs can be
functionalised with protective coatings through methods
such as silanization or carbodiimide activation, which
enhance stability and enzyme retention [93]. Some MNPs,
such as nickel ferrite, have demonstrated the ability to
immobilise enzymes directly from crude cell lysates,
streamlining the immobilisation process and reducing the
need for extensive purification or chemical treatments [97].
However, despite their advantages, several limitations
remain. Uncoated MNPs are susceptible to oxidation, which
may compromise both nanoparticle integrity and enzyme
activity, thus necessitating protective surface modifications
[98]. Additionally, diffusion limitations within densely
packed systems can hinder substrate access and reduce
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catalytic efficiency [99]. Moreover, the need for precise
surface functionalisation to improve enzyme binding and
biocompatibility can complicate the design and synthesis of
immobilised systems [93, 100].

8. BIOACTIVE RECOVERY VIA
ENZYMES

The advancement of enzyme technology has markedly
improved the extraction of bioactive compounds from
seaweeds, which are abundant in antioxidants, poly-
saccharides, and other high-value metabolites. Among these
innovations, the application of immobilised enzymes in
enzyme-assisted extraction (EAE) has gained considerable
attention. Incorporating immobilised enzymes into EAE
systems enhances both the yield and specificity of target
compound recovery, while also improving enzyme stability,
extending catalytic lifespan, and enabling repeated use
[101-104]. These benefits are largely attributed to
immobilisation techniques such as covalent binding,
entrapment, and adsorption onto solid supports, which
contribute to greater process efficiency and sustainability in
industrial-scale applications [105, 106].

In addition to enhancing yield and selectivity,
immobilised enzymes exhibit excellent tolerance to harsh
processing conditions, including elevated temperatures
and broad pH ranges, making them robust biocatalysts for
diverse extraction environments [107, 108]. Their
reusability simplifies downstream processing by faci-
litating enzyme recovery and reducing contamination
risks, ultimately lowering operational costs [109]. Such
operational advantages are critical in large-scale
production systems where process reliability and cost-
efficiency are essential.

IMMOBILISED

Empirical studies have validated the effectiveness of
immobilised enzymes in extracting bioactives from brown
seaweeds. Hydrolytic treatments of brown algae have
significantly increased the release of compounds such as
phlorotannins and sulfated polysaccharides, known for their
antiviral and anti-inflammatory properties [110]. Compared
to free enzymes, immobilised systems consistently yield
higher concentrations of desired metabolites [111]. For
example, laccase from Trametes versicolor, immobilised via
cross-linked enzyme aggregates, demonstrated improved
pH stability, and maintained high catalytic efficiency across
multiple cycles in the degradation of bisphenol A - a proxy
for persistent organic pollutants - highlighting the broader
applicability of immobilisation for extraction purposes
[108].

To overcome the limitations associated with free
enzyme systems, such as rapid inactivation and recovery
challenges, magnetic nanoparticles (MNPs) have been
employed as enzyme carriers. MNPs offer high surface
area and tunable surface chemistry, enabling improved
enzyme loading, enhanced catalytic activity, and facile
magnetic recovery, thus streamlining downstream
processing and supporting enzyme reusability [112].

Beyond seaweeds, immobilised enzymes have also been
successfully applied in the selective extraction of pharmaco-
logically active compounds from complex plant matrices.
Ligand fishing techniques, which utilise immobilised
enzymes on solid supports, allow for the targeted isolation
of bioactive molecules such as flavonoids and polyphenols
through affinity interactions, offering valuable insights into
their therapeutic potential [113]. Similarly, in citrus peel
extraction, immobilised pectinases have facilitated cell wall
degradation, enhancing the release and solubilisation of
antioxidants and flavonoids [114]. These examples
underscore the versatility and applicability of enzyme
immobilisation across diverse biological sources.

To further optimise extraction performance, recent
studies have explored co-immobilisation of multiple
enzymes. This approach promotes substrate channelling,
minimises mass transfer limitations, and enhances catalytic
synergy, leading to improved enzymatic activity and overall
process stability [115]. Additionally, integrating immo-
bilised enzymes with advanced extraction techniques - such
as ultrasound-assisted extraction and supercritical fluid
extraction - has been shown to improve extraction
efficiency while preserving the structural integrity and
bioactivity of the compounds of interest [116]. The
adaptability of enzyme immobilisation also enables tailoring
of catalytic systems to specific substrates and product
profiles. The use of novel support materials, such as
mesoporous silica, has proven effective in optimising
enzyme loading, distribution, and kinetic performance
during extraction processes [117]. This level of customi-
sation broadens the potential applications of immobilised
enzyme systems for extracting bioactives from a wide range
of marine and terrestrial biomass.

Figure 6 shows the schematic workflow for enzyme
immobilisation onto magnetic nanoparticles (MNPs) for
bioactive compound extraction. The process begins with
the synthesis of MNPs, followed by surface modification or
functionalisation (e.g., -NH, or -COOH groups) to
facilitate enzyme binding. Enzymes are then immobilised
onto the modified MNPs, purified, and characterised. The
immobilised enzymes are applied for bioactive extraction
and recovered via magnetic separation. The cycle
continues with either reuse or final disposal/application,
depending on enzyme stability and performance.

In conclusion, enzyme immobilisation represents a
powerful advancement in bioactive compound extraction.
It offers enhanced catalytic stability, reusability, and
selectivity, while facilitating cost-effective and sustainable
processing. These advantages position immobilised
enzyme-assisted extraction as a highly promising strategy
for the nutraceutical, pharmaceutical, and functional food
industries, enabling more efficient utilisation of natural
resources for value-added product development.
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Fig. (6). Schematic diagram illustrating the steps involved in enzyme immobilisation onto magnetic nanoparticles for bioactive extraction

and reuse.

CONCLUSION

Seaweed is an abundant source of bioactive
compounds, particularly polysaccharides. The growing
popularity of advanced enzyme-assisted extraction
technology has become important for effectively isolating
valuable polysaccharides from seaweed. Through the
immobilization of enzymes, this technology has the
potential to enhance cost-effectiveness. Using magnetic
nanoparticles for enzyme immobilization offers several
benefits. These include the ease of separating the
enzymes, improved stability and activity, higher enzyme
loading, and the possibility of using them for multiple
functions. The advantages of magnetic nanoparticles make
them a highly effective and economical option for
biotechnological applications, especially in industrial
processes that demand optimal and affordable enzyme
utilization while also being environmentally sustainable.
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