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Abstract:
Introduction: The findings from the in vitro propagation research indicate that the concentration of macronutrients
has the most significant impact on shoot organogenesis in plant tissue culture. The present study aims to predict the
maximum degree of shoot organogenesis in Chlorophytum borivilianum using two sophisticated computer models:
Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and Gaussian Process Regression (GPR).

Methods: The data were collected from experiments involving plant cultivation, using 60 explants in a laboratory
setting.  These  experiments  included  42  different  combinations  of  macronutrient  compositions  of  Murashige  and
Skoog (MS) media, and the results related to plant shoot organogenesis were used to train both Artificial Neural
Network  and  Gaussian  Process  Regression  models.  The  performance  of  the  developed  models  was  evaluated  by
comparing the observed and predicted output values based on the inputs.

Results: The results of the output modelling demonstrated that the GPR model exhibits superior accuracy compared
to the MLP-ANN model. The model GPR has a percentage accuracy of 99.981 for the number of shoots and 99.885 for
the shoot length. On the other hand, the ANN model has an accuracy percentage of 99.825 for the number of shoots
and  97.582  for  the  shoot  length.  The  partial  dependence  plot  further  illustrates  the  relationship  between  the
concentration of macronutrients and the number and length of shoots.

Discussion: The concentration of macronutrients determines the structural and physiological changes that occur due
to  interactions  between  macronutrients  and  plants.  The  ANN  and  GPR  models  successfully  relate  the  impact  of
macronutrient concentration on the growth indices.  The growth indicators of  Chlorophytum borivilianum  show a
beneficial  response  to  higher  doses  of  calcium  chloride  and  magnesium  sulphate.  The  models  show  that  higher
concentrations of potassium nitrate (grams per litre) negatively affect shoot growth, followed by ammonium nitrate.

Conclusion: The created GPR model can accurately estimate the number of shoots and shoot length by developing
various formulations of MS media with variable macronutrient contents for the in vitro propagation of Chlorophytum
borivilianum.

Keywords: Artificial neural network, Gaussian process regression, Multi-layer perceptron, Mean square error, Root
mean square error.
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1. INTRODUCTION
Nowadays, the demand for herbal products is booming,

reflecting  keen  interest  in  plant-derived  remedies.
Chlorophytum borivilianum, also known as Safed Musli, is
a plant with high medicinal and industrial value [1]. It is
used in the treatment of various conditions, including as a
general  sex  tonic,  aphrodisiac,  antidiabetic,  and  remedy
for physical weakness. This particular plant has numerous
benefits, such as boosting the immune system, providing
relief for pre- and postnatal issues, alleviating rheumatism
and joint  pain,  and  promoting  lactation  in  breastfeeding
mothers.  Traditionally,  it  has  also  been  used  to  address
diarrhoea,  dysentery,  gonorrhea,  and  leucorrhea.  In
Ayurvedic literature, Chlorophytum borivilianum is highly
regarded  for  its  exceptional  medicinal  properties  and
plays a vital role in the creation of more than a hundred
Ayurvedic  formulations  [2,  3].  The  aforementioned
information  indicates  a  high  demand  for  Chlorophytum
borivilianum due to its rich content of beneficial medicinal
compounds, including flavonoids, triterpenoids, alkaloids,
saponins, phenols, vitamins, and tannins [4]. Among these
compounds,  saponin  is  particularly  significant  and  is
primarily  found  in  the  plant's  roots.  As  a  result,  these
precious roots are being exploited for industrial purposes,
necessitating  the  extraction  of  the  entire  plant  from  its
natural  habitat,  and  Chlorophytum  borivilianum  is
therefore  classified  as  an  endangered  herb  [5].  The
Medicinal Plant Board of India promotes and protects this
plant,  which  is  ranked  26th  among  the  highest-priority
medicinal plants due to its exceptional medical properties.
The  Indian  government  has  promoted  the  cultivation  of
Chlorophytum borivilianum due to its significant economic
potential.  However,  inadequate  seed  germination  and
tuber  dormancy  negatively  affect  the  consistent  avail-
ability of Musli in the market [6, 7]. Traditional methods of
plant  propagation  are  insufficient  to  meet  the  growing
demand for Chlorophytum borivilianum,  highlighting the
need for  in  vitro  propagation  for  large-scale  commercial
production  [8].  Micropropagation  is  a  crucial  technique
used  to  propagate  important  species  commercially  and
conserve germplasm. The method of micropropagation is
employed to generate plants of  superior  quality  that  are
disease-free  and  retain  their  authentic  traits  [9,  10].  To
assess the effectiveness of this procedure, it is crucial to
meticulously  observe  and  measure  the  growth
characteristics of the plant. This requires careful control
over  multiple  factors,  including  the  choice  of  explant,
media  composition,  sterilization  methods,  and  culture
conditions.  Media  composition  plays  a  vital  role  in
successful  micropropagation,  as  the  concentrations  of
hormones,  macronutrients,  micronutrients,  and  vitamins
have a significant impact [11].

While numerous studies have examined the effects of
manipulating  hormone  concentrations,  relatively  little
attention  has  been  given  to  investigating  differences  in
macronutrient  compositions  [12].  Each  plant  requires
unique  and  specialized  combinations  of  macronutrients.
Numerous  synthetic  media  have  been  developed  to
provide plants with the essential  nutrients and additives

necessary for optimal growth. Each type of media has its
own  distinct  composition  of  macronutrients  [13].  The
development of plant cells or tissues is dependent on six
primary elements: nitrogen (N), phosphorus (P), potassium
(K),  calcium  (Ca),  magnesium  (Mg),  and  sulphur  (S).
Macronutrients  are  essential  nutrients  that  provide  the
components necessary for plant growth and development.
Each  species  has  different  ideal  nutrient  concentrations
required  to  achieve  the  highest  development  rates  [14].
The formulation of media for plant tissue culture is crucial.
Murashige and Skoog have been recognized as  effective
basal  media,  which  have  been  widely  used  to  culture
various plant species without any noticeable physiological
issues.

Nevertheless, it is worth noting that mineral require-
ments can vary among plant genotypes and tissue culture
techniques.  Some researchers  have  even  suggested  that
the  composition  of  the  MS  formulation  may  be
supraoptimal. Alterations to macronutrient concentrations
have been explored through preferential MS modifications
[15].

The  data  collected  from  plant  tissue  culture  studies
include various variable types, such as continuous, count,
binomial, or multinomial. To ensure accuracy, researchers
typically  employ  statistical  methods  such  as  Analysis  of
Variance  (ANOVA)  and  linear  regression  [16].  If  the
continuous  data  follow  a  normal  distribution,  ANOVA  is
appropriate;  however,  it  is  improper  to  use  ANOVA  to
analyze count, binomial, or multinomial data without prior
adjustment.  Traditional  statistical  methods  can  also  fail
when dealing with complex and nonlinear inputs [17, 18].

Machine Learning (ML) and ANN models are cutting-
edge technologies that can assess and enhance the output
variables  based  on  the  input  parameters  [19].  Using
advanced technologies such as ML algorithms, GPR, and
MLP  neural  networks,  the  shoot  count  and  length  are
predicted from various combinations of macronutrients in
the culture media.

In this paper,  the growth indices against each media
formulation  are  noted.  Machine  Learning  and  Artificial
Neural Network (ANN) models are utilized to assess and
enhance  the  output  variables  based  on  the  input
parameters. The paper is structured as follows: Section 2
describes  the  modelling  techniques  used  and  their
methodology. Section 3 details the experimental setup for
in vitro propagation, presented using a flowchart design,
followed by a performance evaluation of both models. The
results are analyzed and discussed in Section 4 based on
R-squared  (R2),  Root  Mean  Square  Error  (RMSE),  Mean
Square Error (MSE), and accuracy percentage. Section 5
concludes the paper.

2. METHODOLOGY
For  this  study,  we  investigated  the  efficacy  of  two

distinct  modelling  procedures,  ANN-MLP  and  Machine
Learning  Model-Gaussian  Process  Regression,  in
representing  the  data.
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2.1. Artificial Neural Network
One  of  the  most  famous  network  algorithms  is  the

feed-forward  ANN,  which  uses  a  nonlinear  activation
function  in  addition  to  the  input  nodes  and  multiple
perceptrons. The input layer, the hidden layer (or layers),
and the output layer are the three interconnected parts of
the structure.  The dataset's  inputs  form the basis  of  the
input  layer,  and  the  class  number  of  outputs  is
represented by one or more neurons in the output layer.
Supervised learning tasks frequently employ an MLP. To
decrease  the  error,  the  weights  and  biases  are  adjusted
using the backpropagation approach [20, 21]

The concepts of data processing in the brain served as
the inspiration for ANNs, which are seen as an analytical
way to mimic system performance. To accurately forecast
the  system's  performance,  experimental  data  is  used  to
“train”  the  ANN [22].  Before  training  an  ANN,  the  data
must  be  normalized  over  the  interval  [0,  1].  Since  ANN
models  rely  on  the  neurons'  transfer  functions,  this  is
essential.  Without  it,  the  sigmoid  function  calculations
have a finite range of possible values. An ANN will fail to
converge on the training data or produce useful results if
the data used with it is not scaled to a suitable range. Data
standardization  was  applied  before  ANN  modelling  to
normalise  and  identify  outliers  for  each  cultivar.

The datasets were standardized to a range of 0 to 1. The
next  step  was  to  employ  Principal  Component  Analysis
(PCA)  to  look  for  data  outliers;  unfortunately,  none  were
found  [23,  24].  The  ANN  was  developed  based  on  five
inputs,  five  macronutrient  combinations  at  different
concentrations,  and  two  outputs:  shoot  length  and  the
number of shoots. An MLP model was implemented with a
hyperbolic tangent sigmoid transfer function in the hidden
layer and a linear transfer function in the output layer. The
model is designed with two hidden layers: the first layer has
30 neurons, and the second has 10, with an iteration limit of
1000.  The  network  was  trained  using  the
Levenberg–Marquardt backpropagation algorithm. All data
were normalized between −1 and 1 using Eq. (1) to achieve
dimensional  consistency  of  the  parameters  and  to  ensure
compatibility  with  the  adopted  transfer  function.  Here,
MiM_iMi is the normalized value, MmaxM_\text{max}Mmax
and  MminM_\text{min}Mmin  are  the  maximum  and
minimum  values  of  the  scaling  range,  and  NiN_iNi  is  the
actual data to be normalized, with NmaxN_\text{max}Nmax
and  NminN_\text{min}Nmin  representing  the  maximum
and  minimum  values  of  the  actual  data  [25,  26].
Subsequently,  the  developed  model  was  converted  into  a
mathematical  equation through the weights  and biases  in
conjunction with the transfer functions.

(1)

2.2. Gaussian Process Regression
One  powerful  nonparametric  supervised  learning

technique that can handle both regression and classification
problems  effectively  is  the  Gaussian  Process  (GP),  also

known as the Kriging model [27]. Its primary application is
Bayesian nonlinear regression. It is an effective ML method
that  relies  on  the  Gaussian  probability  density  function.
With a small dataset, GPR operates efficiently, consistently,
and  with  higher  accuracy  than  other  methods  [28].  A
random  variable's  distribution  is  described  using  the
Gaussian probability density function. If you have a binary
dataset, you can use the GP classifier to find out what class
an input sample is most likely to be in [29]. The technique
consistently  produces  high-precision  results  when  using
small  datasets [30].  It  is  also computationally simple.  The
function  used  to  find  the  relationship  between  two
variables,  x  and  y,  is  shown  in  Eq.  (2).

(2)

Gaussian Processes (GPs) are regression models that do
not rely on any preconceived notions about the functional
form  of  the  data.  Instead,  they  create  a  probability
distribution  over  functions,  enabling  them  to  provide
confidence estimates for predictions. This feature is highly
regarded and widely used for acquisition activities. Starting
with  an  initial  probability  distribution  over  functions,  the
process  updates  the  distribution  based  on  collected  data.
Gaussian  Processes  (GPs)  are  based  on  the  idea  that
subsets  of  the  function's  values  follow  a  joint  Gaussian
distribution  [31].

It can be inferred that when a particular set of inputs
is  given,  the  resulting  outputs  will  conform  to  a
multivariate Gaussian distribution. The covariance of the
joint  distribution  is  determined  using  a  kernel  function,
which  serves  as  a  metric  for  measuring  the  similarity
between the inputs. Specifically, an Automatic Relevance
Determination  (ARD)  kernel  is  employed  in  the  GPR
model. When provided with observations, such as training
data, we can utilize these observations to revise the initial
information  and  compute  the  subsequent  distribution.
When estimating the value of an input using an unknown
function, we use a technique called marginalization of the
posterior distribution. This allows us to obtain the average
value of the input. The level of confidence in the prediction
is determined by the variance [32, 33].

Bayesian  optimization  is  integrated  with  the  GPR
algorithm to fine-tune the hyperparameters. In covariance
functions,  the  unknown  parameters  are  called  “hyper-
parameters.” The GPR model is finalized once the form of
the  kernel  function  and  the  “hyperparameters”  are
established  [34].

The early stopping technique sets a threshold on the
gradient  of  the  loss  function  (or  the  step  size)  and  a
validation patience value of 6 to avoid overfitting. This is
achieved  by  observing  the  validation  metric  and  halting
training when no further progress is detected [35].

3. EXPLANT SELECTION AND THE EXPERIMENTAL
SETUP OF IN VITRO PROPAGATION

The impact of macronutrient quantity in the media as
an input variable was investigated in this work using two
modelling  techniques:  ANN-MLP  and  GPR.  To  cover  a
range of inputs from 0 to 2, 60 samples were generated.
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Table 1. Concentrations of macronutrients employed to formulate various media combinations.

Factor Name Standard MS
Media Concentration (mg/L) Variations(mg/L)

- Macronutrients X 0.58X 1.42X 2X
A(x1) Ammonium nitrate 1650 957 2343 3300
B(x2) Potassium nitrate 1900 1102 2698 3800
C(x3) Calcium chloride anhydrous 440 255 624.8 880
D(x4) Magnesium sulphate 370 214.6 525.4 740
E(x5) Potassium phosphate monobasic 170 99.6 241.4 340

Data collection from in vitro experiments is the initial step
toward streamlining the training process of ANN models.
A  linear  combination  of  the  input  and  output  data  was
used to train the model. The inputs were carefully selected
to  accurately  represent  the  experimental  setting's
nutritional  components.  The  shoot  organogenesis  data,
which  provided  a  realistic  representation  of  the  growth
and development of the plant specimens under study, were
used to generate the model outputs.

The  primary  and  essential  stage  in  the  entire
procedure  is  the  selection  of  the  crucial  variables  and
their  corresponding  ranges.  In  this  study,  we  employed
several  macronutrient  permutations  to  generate  42
iterations  of  Murashige  and  Skoog  (MS)  medium.
Murashige and Skoog designed the original MS medium in
1962. To stimulate micro-shoot formation, the medium was
enriched with 2.5 mg/L of BAP (6-benzylaminopurine), 30
g/L of sucrose, and 8 g/lLof agar.

The  concentrations  of  minerals  and  vitamins  were
consistent  across  all  the  various  culture  media  designs.
The  standard  MS  media  concentration  was  labeled  “X,”
while  other  formulations  varied  from  it,  i.e.,  0.58X,  1X,
1.42X, and 2X, as depicted in Table 1. The concentration
of  macronutrients is  expressed in milligrams.  The media
preparations  were  carefully  transferred  into  magenta
boxes  after  being  adjusted  to  a  pH  of  5.7.

Nodal  explants  of  Chlorophytum  borivilianum  were
used  as  plant  material.  The  Chlorophytum  borivilianum
plantlets  were  procured  from  Patanjali  Herbal  Garden,
Haridwar,  an  institute  known  to  protect  the  rare  and
valuable plant collections. To ensure explant cleanliness,
Tween-20, a widely used surfactant, was used. Following
this,  the shoot  bud explants  were submerged in  running
tap  water  for  30  minutes  to  effectively  remove  any  dust
particles.  The  explants  were  sterilized  with  0.1%  HgCl2
for 6-7 minutes, followed by three rounds of washing with
distilled  water.  A  total  of  twenty  explants  were  used  for
each  variation,  with  five  magenta  boxes  used  for
inoculation.  Each  setup  was  reproduced  three  times.

An  MLP  model  was  implemented  with  a  hyperbolic
tangent sigmoid transfer function in the hidden layer and a
linear  transfer  function  in  the  output  layer.  The  network
was  trained  with  the  Levenberg–Marquardt  back-
propagation algorithm. Forty-two treatments, including the
control, were applied, divided randomly into three datasets,
with  70%  (30  samples)  for  training,  15%  (6  samples)  for
validation,  and  15%  (6  samples)  for  testing.  Additionally,

GPR was calibrated and predicted using the Statistics and
ML Toolbox in the MATLAB R2021a software.

All  data  were normalized to  the range −1 to  1  using
Eq.  (1)  to  achieve  dimensional  consistency  of  the
parameters  and  ensure  compatibility  with  the  adopted
transfer function. The experiment required the cultures to
be  maintained  in  a  controlled  environment  at  25  ± 2°C.
Additionally, a photoperiod consisting of 16 hours of light
and  8  hours  of  darkness  was  used.  The  explants  were
inoculated  on  various  prepared  media  formulations.

3.1. Performance Evaluation for both Models
GPR was calibrated and predicted using the Statistics

and  ML  Toolbox  in  the  MATLAB  R2021a  software.  The
study uses Mean Squared Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and R-squared
metrics to assess the overall performance of the models,
as  presented  in  Eqs.  (3,  4,  5,  and  6)  [36-38].  Mean
Squared  Error  (MSE)  is  the  average  of  the  squared
differences between observed values in a statistical study
and the values predicted by a model (Eq. 3), while errors
between  paired  observations  reflecting  the  same
phenomenon are measured using the Mean Absolute Error
(MAE),  calculated  using  Eq.  (5)  [39].  The  accuracy  of  a
model's  predictions  improves  when  these  metrics  have
lower  values,  indicating  a  closer  match  to  the  observed
actual values [40].  The coefficient of  determination, also
known as R-squared (R2), was first introduced by Wright in
1921.  It  quantifies  the  proportion  of  the  dependent
variable's  variation  that  the  independent  variables  can
explain. The coefficient of determination typically ranges
from 0 to 1, with a perfect R2 value of 1 indicating that the
regression predictions align flawlessly with the observed
data (Eq. 6) [41].

(3)

(4)

(5)

(6)
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Table 2. Tabulation representation of the statistical analysis of ANN and GPR.

Row GPR (No. of Shoots) GPR (Shoot Length) ANN (No. of Shoots) ANN (Shoot Length)

Accuracyinpercentage 99.98181865 99.9856376 99.82570316 97.58222034
RMSE 0.000181814 0.000143624 0.001742968 0.024177797
MSE 3.30561E-08 2.06279E-08 3.03794E-06 0.000584566

R-squared 1 1 0.999999927 0.999999887
MAE 9.50847E-05 6.53584E-05 0.000730307 0.000649414

4. RESULTS AND DISCUSSION

4.1.  Effects  of  Varying  Concentrations  of
Macronutrients on the In Vitro Growth of Plants

The  Chlorophytum  borivilianum  explants  were
inoculated  on  MS  media  preparations  containing  42
different  concentrations of  macronutrients.  The explants
were re-cultured after 20 days. After 20 days, the results
were recorded for the number and length of the shoots at
each concentration. The data was carefully recorded and
utilized  to  train  the  algorithms,  assessing  their
effectiveness  in  accurately  predicting  the  desired
outcomes.  The  highest  number  of  shoots,  20,  and  shoot
length, 11 cm, were observed when the concentration of
ammonium  nitrate,  potassium  nitrate,  and  potassium
dihydrogen  phosphate  was  0.58  times  the  standard
concentration (X) of the chemical compound in MS media.
Additionally,  the  concentration  of  calcium  chloride  and
magnesium sulphate heptahydrate was 1.42 times X. The
most  unfavourable  outcomes  were  observed  when  the
media  contained  ammonium  nitrate,  potassium  nitrate,
and  calcium  chloride  at  a  concentration  1.42  times  the
standard,  and  magnesium  sulphate  heptahydrate  and
potassium dihydrogen phosphate at a concentration 0.58
times the standard.

4.2.  Evaluation  and  Comparison  of  ANN  and  GPR
Model

Our study involved the assessment and comparison of
the performance of two models, namely the ANN and GPR
models. Multiple performance metrics are typically taken
into account when evaluating ML modelling, as relying on
a single metric may not accurately predict or validate the
results.  Therefore,  we  used  assessment  metrics  such  as
RMSE, MSE, R2, and MAE to predict the number of shoots
and  shoot  length  in  Chlorophytum  borivilianum  tissue
culture.  Strong  R2  values  indicate  a  strong  correlation
between the input and output variables. These values are
achieved when the difference between the average of the
measured values and the predicted values is greater than
the  difference  between  the  actual  and  predicted  values.
MSE is a robust performance measure that quantifies the
discrepancy  between  actual  and  predicted  values.  High
MSE  values  indicate  high  degrees  of  error,  and
conversely. The MSE values for all output variables were
consistently low across all evaluated models, suggesting a
minimal  discrepancy  between  the  actual  and  projected
values  [37,  41].

The GPR model demonstrated strong predictive ability
for both shoot count and shoot length, as evidenced by R2
values of 1 for both models.  Conversely,  the ANN model
yielded an R2 value of 0.999, indicating that nearly 100%
of the variability in shoot organogenesis —specifically, the
number of shoots and shoot length —can be accounted for
by  the  input  variables.  In  Gaussian  Process  Regression
(GPR),  an  R-squared  value  of  1  indicates  a  perfect  fit,
meaning  the  model  accounts  for  the  variation  in  the
dependent variable using the independent variables. This
means the model's predictions match the actual observed
data  precisely,  with  no  errors.  GPR,  a  highly  adaptable
nonparametric  model,  often  shows  high  fit  when  the
training dataset is small, has low noise, or is assessed on
the same data it was trained on. This is because, like other
nonparametric models, GPR can easily overfit, particularly
when working with limited data or when the training and
testing  datasets  are  identical  [34,  35].  The  low  RMSE
values  of  0.00018  and  0.00014  in  Table  2  suggest  that
there  is  a  modest  average  difference  between  the
anticipated and actual number of shoots and shoot length,
respectively.

In contrast, the ANN model yielded an RMSE value of
0.0017  for  the  number  of  shoots  and  0.0241  for  shoot
length. The MSE and MAE for both the number of shoots
and shoot  length  are  presented  in  Table  2,  using  values
predicted  by  the  ANN and  GPR models.  The  GPR model
has an accuracy % of  99.981% for the number of  shoots
and 99.985% for shoot length, while the ANN model has
an  accuracy  of  99.825%  for  the  number  of  shoots  and
97.582%  for  shoot  length,  as  mentioned  in  Table  2.

The performance of the built models can be analyzed
by  comparing  the  observed  and  predicted  values  of
outputs derived from the processed inputs. A comparison
between  observed  and  predicted  outputs  elucidates  the
behaviour  of  the  ANN  model  while  analysing  inputs  as
depicted  in  Fig.  (1):  Parts  a)  and  b)  represent  the
comparison of results predicted by GPR and actual results,
whereas  parts  c)  and  d)  represent  the  comparison  of
actual  and  predicted  responses  by  ANN.  The  graph
compares  the  Actual  response  (solid  line)  and  the
predicted response (dashed line) derived from the neural
network  and  GPR  models.  The  results  indicated  strong
concordances between the measured and predicted values
of  explant  growth  parameters  for  both  the  training  and
testing  sets  (Table  2).  The  model  demonstrates  superior
performance when the predicted line closely matches the
actual line.
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Fig. (1). Visual representation of actual and predicted “no. of shoots” and “shoot length” response using two modelling techniques: Part
(a) and (b) represent GPR model prediction, (c) and (d) represent ANN model prediction.

The  statistics  computed  for  the  ANN  models
demonstrate a high level of concordance with the ability of
the two subsets to predict each output. An inherent feature
of the ANN model is its independence from a predetermined
definition of an appropriate fitting function, enabling it to
provide a universal approximation capability for nearly all
types of nonlinear functions. This flexibility may allow the
modeller to construct a model with near-optimal prediction
accuracy [40].

4.3. Impact of the Concentration of Macronutrients
on the Shoot Organogenesis

For proper explant development, it is necessary to use
optimal nutritional media. The provision of nitrogen in the
culture  media  as  nitrate  or  ammonium is  a  fundamental
requirement  for  the  growth  of  explants  [42].  Type  and
quantity  of  nitrogen  provided  may  be  affected  by
genotype.  Undoubtedly,  nitrate  is  the  preferred  type  of

nitrogen for most plant species. However, recent research
from  the  Central  Institute  of  Aromatic  and  Medicinal
Plants  (CIMAP)  has  shown  that  the  crop  has  minimal
requirements for nitrogen, phosphate, and potassium [43].
In our study, we also found that shoot growth is favourable
when  the  amounts  of  ammonium  nitrate,  potassium
nitrate, and dihydrogen phosphate are reduced from the
original  MS  media  composition,  especially  when  the
higher concentrations of ammonium nitrate and potassium
nitrate are reduced.

In contrast, higher concentrations of calcium chloride
and magnesium sulphate, which are almost double those
found in MS media, favoured shoot organogenesis in the
plant.  The  necessary  reagents  in  the  MS  medium  have
been  identified  as  calcium  chloride  (CaCl2),  magnesium
sulphate (MgSO4),  and potassium sulphate (KH2PO4)  [44,
45].
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Fig. (2). Partial dependency plot given by the GPR model depicting the effect of different macronutrient compositions on the number of
shoots and shoot length.

Calcium  and  magnesium  play  vital  roles  in  plant  tissue
culture,  contributing  to  cell  division,  growth,  and  overall
plant health. Calcium is essential for cell wall formation and
cell  elongation,  while  magnesium  is  a  key  component  of
chlorophyll, aiding in photosynthesis. Both minerals also act
as  enzyme  activators  and  influence  nutrient  uptake  and
stress tolerance [46-49]. Nikam and Chavan [50] explored
the  nutrient  absorption  pattern  of  C.  borivilianum
throughout  its  various  growth  phases.  They  found  that
nitrogen and potassium levels increased in the leaf  tissue
up  to  75  days  of  growth,  after  which  they  decreased.
Conversely,  calcium  and  magnesium  continued  to
accumulate  in  both  leaf  and  tuber  tissues  throughout  the
plant's development.

The  Partial  dependency  plots  for  the  GPR  and  ANN
models  are  shown  in  Figs.  (2  and  3),  respectively.

The  concentration  of  macronutrients  determines  the
structural and physiological changes that result from their
interactions  with  plants.  It  is  mainly  the  dosage  at  which
macronutrients are given that determines their efficiency.
As  the  ideal  concentrations  of  macronutrients  vary  from
plant to plant, both suboptimal and supraoptimal levels can
have  both  beneficial  and  harmful  effects  on  plant  growth
and development.

Multiple studies have assessed the effectiveness of GPR
and ANN in modelling various processes. The performance
of both models was evaluated by comparing their ability to
predict both observed and unknown variables.

Analyzing  the  MSE  statistics,  GPR  demonstrated
superior  performance  compared to  ANN.  Comparing  GPR
and ANN models for predicting shoot organogenesis in the
micropropagation  of  Chlorophytum  borivilianum,
researchers  found  that  the  GPR  model  outperformed  the
ANN model  in predicting shoot number and shoot length.
The weightage preference for  each input  regarding shoot
organogenesis predicted by the GPR model is illustrated in
Fig. (4): Part a) represents the Number of shoots, while part
b)  represents  shoot  length.  Each  bar  indicates  the
“Predictor  Weight,”  which  quantifies  the  influence  or
importance  of  each  predictor  variable  (x1-x5)  on  the
respective outcome. A higher bar signifies a greater impact.

Number of Shoots: In the left chart, predictor x3 and x4
are shown to have the most  significant  weight,  indicating
they  play  the  largest  role  in  predicting  the  “Number  of
Shoots.”  Predictors  x1  and  x5  also  have  notable  weights,
whereas x2 is less influential. Shoot Length: In the correct
chart, predictors x3 and x4 again have the highest weight,
underscoring  their  substantial  impact  on  “Shoot  Length.”
Predictors x1 and x5 maintain considerable weights, similar
to  their  influence  on  the  “Number  of  Shoots,”  while  x2
remains  the  least  significant.  These  charts  consistently
highlight  predictor  x3  and x4  as  the  key  factors  affecting
both the “Number of Shoots” and “Shoot Length,” with x2
being  the  least  impactful.  This  analysis  is  crucial  for
identifying the most significant input features in predicting
specific outcomes within the model.
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Fig. (3). Partial dependency plot given by ANN model depicting the effect of different macronutrient compositions on number of shoots
and shoot length.

Fig. (4). The prioritization of each input (macronutrient concentrations) for predicting: Part (a) the number of shoots and Part (b) the
shoot length.

5. LIMITATIONS
While  minimizing  the  training  cost  function,  neural

network  models  can  occasionally  result  in  overfitting.
Additionally,  they  require  prior  process  data.  Both  the

quality  and  quantity  of  the  training  data  significantly
influence  the  accuracy  of  network  predictions.  Although
ANN  and  GPR  are  both  heuristic  methods,  they  exhibit
notable conceptual differences. The GPR algorithm requires
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less data than ANN and is more user-friendly.  The risk of
overfitting in GPR is lower than in ANN. Therefore, when
working with smaller datasets, GPR often outperforms ANN
in  terms  of  prediction  accuracy.  However,  the  model's
success  is  strongly  influenced  by  the  choice  of  kernel
function  and  the  tuning  of  its  hyperparameters.
Nevertheless,  the  GPR  method  is  not  recommended  for
extensive training datasets,  as an increase in dataset size
rapidly raises the computational cost of employing GPR.

Conversely, MLP models require extensive, high-quality
datasets for effective training. In the realm of plant tissue
culture, creating these comprehensive datasets can be both
time-intensive and costly. This challenge is compounded by
plants'  varying  responses  to  different  media  components
and environmental conditions. Additionally, ML models may
struggle  to  be  applicable  across  various  plant  species  or
even within different genotypes within the same species.

CONCLUSION
To  address  the  challenges  associated  with  tissue

culture,  several  models  are  available.  We  evaluated  the
performance of GPR and ANN-MLP models and found that
the results of the laboratory experiments align closely with
the  predictions  obtained  from  the  MLP  model.  The
findings of this study validate the efficacy of both the GPR
and MLP models in accurately forecasting tissue culture
stages. Furthermore, the remarkable consistency between
the  predicted  and  observed  training  and  testing  values
indicates  that  these  models  are  highly  proficient  in
analyzing the variables investigated in the study. For this
research, GPR and ANN models were employed to predict
the  number  of  shoots  and shoot  length in  Chlorophytum
borivilianum. The GPR model outperformed the ANN-MLP
model,  albeit  by  a  narrow  margin.  Both  models  can  be
efficiently  utilized  to  identify  treatment  interactions  in
various  experiments,  reducing  the  need  for  traditional
statistical analysis. Overall, the findings suggest that the
GPR  model  is  a  suitable  choice  for  predicting  the  ideal
macronutrient  composition  to  maximize  the  number  of
shoots  and  shoot  length  in  Chlorophytum borivilianumin
vitro tissue culture.
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