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Abstract:

Introduction:  Obtaining  soluble  eukaryotic  proteins  using  bacterial  expression  systems  remains  a  significant
challenge. Despite the availability of various techniques to optimize protein expression in E. coli, eukaryotic proteins
are frequently expressed in an insoluble form when produced in prokaryotic cells.

Methods:  Genes  of  interest  were  cloned  into  expression  vectors,  pET22b,  and  modified  pET32a,  using  the
restriction-ligation method. BL21(DE3), BL21(DE3) Star, BL21(DE3)pRARE, Tuner(DE3), Origami, SHuffle®T7, and
C41(DE3) strains were used for analytical induction. Molecular modeling and molecular dynamics simulations were
employed to design the experiments and to interpret the resulting data.

Results and Discussion: To prevent the accumulation of a truncated form of potato eIF4E in inclusion bodies, we
tested various E. coli strains and repositioned affinity tags from the C-terminus to the N-terminus of the protein. Only
the full-length eIF4E was found to be soluble in the prokaryotic expression system. Based on the eIF4E model and
molecular dynamics simulations, we proposed a potential explanation for the impact of the N-terminal fragment on
protein solubility.

Conclusion: The interaction between the N-terminal fragment and the dorsal surface of eIF4E may prevent protein
aggregation.  This  shielding  of  hydrophobic  regions  appears  to  be  a  key  factor  in  reducing  aggregation,  thereby
facilitating the expression of eIF4E in a soluble form.

Keywords:  Protein  purification,  Cap-dependent  translation  initiation,  eIF4F,  Potyviruses,  Bacterial  expression,
Solanum tuberosum.
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1. INTRODUCTION
The  accumulation  of  proteins  in  inclusion  bodies  re-

mains  a  significant  challenge  for  many  recombinant  pro-
teins  produced  in  E.coli.  Numerous  protocols  have  been
developed for the solubilization of proteins from inclusion
bodies [1-5]. The isolation of proteins from inclusion bodies
is a process of  denaturation and their subsequent renatu-
ration.  Cotranslational  protein  folding  is  much  more
efficient than in vitro refolding. It is not clear whether the
protein retains its functional activity after refolding or not.
Additional tests should be performed to confirm the activity
of  the  obtained  protein.  There  are  several  reasons  why
proteins  accumulate  in  inclusion  bodies  during  synthesis,
such as protein aggregation, improper formation of inter- or
intramolecular disulfide bonds, toxicity of target proteins,
and  overexpression  due  to  strong  induction.  Different
strategies  have  been  developed  to  obtain  proteins  in  a
soluble  form  [6-8].

The amino acid sequence at the N-terminus of a recom-
binant protein can determine its propensity for aggregation
and accumulation in inclusion bodies. For example, charged
amino acids may enhance protein solubility by forming hyd-
rogen  bonds,  whereas  hydrophobic  residues  tend  to  pro-
mote aggregation. To prevent the accumulation of protein
in the inclusion bodies, various techniques can be used, for
example, adding a signal peptide to the N-end of the protein
[9, 10]. The signaling peptide promotes protein transport to
a specific location in the cell. Various modifications at the
N-terminal  part,  such  as  acetylation  or  methylation,  can
lead to changes in the interaction of the molecule with the
solvent,  which  also  affects  the  solubility  of  the  protein
[11-13].  However,  since  posttranslational  modifications
occur predominantly in eukaryotic systems, their relevance
is limited in bacterial cells. The co-expression of target pro-
tein and N- or C-terminal tags, such as thioredoxin, SUMO,
or  MBP,  can  also  affect  the  accumulation  of  proteins  in
soluble form [14-17]. Moreover, sometimes, the movement
of the tag from the C to the N-terminus can have a positive
effect on protein solubility [18-20]. The presence of 6His at
the N- or C-terminus can affect the thermal stability of the
protein, which is an important indicator when working with
recombinant proteins [21].

During  the  heterologous  expression  of  the  translation
initiation factor  4E (eIF4E) from Solanum tuberosum in a
bacterial  system,  we  encountered  a  major  obstacle:  the
accumulation of the protein in inclusion bodies. eIF4E is a
cap-binding  protein  that  is  involved  in  the  initiation  of
translation  in  eukaryotic  cells.  It  is  а  component  of  the
eIF4F complex, which binds to the mRNA cap and attracts
the 43S pre-initiation complex [22-25]. eIF4E is represented
by a family of proteins. This family is one of the factors that
makes Solanaceae plants susceptible to potyviruses. How-
ever, there are no experimentally determined structures of
eIF4E proteins of Solanaceae. The interaction of proteins of
the eIF4E from the Solanaceae family with VPg of potato Y
virus is a necessary condition for the development of viral
infection [26-28]. There is no experimental data confirming
the  mechanism  of  interaction  between  eIF4E  and  VPg,
making structural studies crucial. The significant impact of
potyviruses on crop yields also makes it an urgent priority

to study the mechanism of potyviral RNA translation. Sol-
ving  the  structure  of  the  eIF4E-VPg  PVY  complex  would
give  an  obvious  interpretation  of  the  previously  obtained
data, explain the mechanism of interaction between the two
proteins,  and  predict  mutations  that  could  disrupt  this
interaction.  We  need  to  obtain  a  large  amount  of  functi-
onally active recombinant eIF4E for protein crystallization,
as well as for functional studies. However, the tendency of
eIF4E  to  accumulate  in  inclusion  bodies  makes  obtaining
active  protein  multistage  and  inefficient.  To  address  this
challenge,  we  have  conducted  analytical  induction  of
different variants of potato protein eIF4E1 in various E. coli
expression  strains  in  order  to  obtain  this  protein  in  a
soluble  form.

2. MATERIALS AND METHODS

2.1. Nucleotide Sequences
The nucleotide sequence of cDNA eIF4E1 was used to

create expression vectors (Genbank accession: MT828879).

2.2. Molecular Modeling and Molecular Dynamics
The  eIF4E1-49aa  model  was  obtained  as  previously

described [29, 30]. Alphafold3 was used to obtain full-length
eIF4E1 models [31].

Molecular dynamics studies of the obtained theoretical
model  of  the  full-size  eIF4E1  were  carried  out  using  the
Gromacs  2022.3  software  package  [31-34]  and  the  all-
atomic force field Charmm36 (July 2022 version: CHARMM
all-atom  force  field  (July  2022))  [35].  The  solution  was
modeled  using  a  three-point  CHARMM  TIP3P  (TIPS3P)
water  model.  The  system  was  equilibrated  to  achieve  a
constant temperature of 310 K and a constant pressure of 1
bar. The molecular dynamic trajectory was calculated in a
time  interval  of  200  ns  at  a  given  constant  pressure  and
temperature with a time step of 2 fs. Manual editing of the
models was carried out in the Coot program [36].

2.3. Data Analysis and Visualization
The superposition  and  comparative  analysis  of  experi-

mental  and  theoretical  eIF4E  models  were  carried  out  in
the software packages Coot and PyMOL (Version 2.5.0a0.
OPEN-SOURCE). Clustering and analysis of the molecular
dynamic  trajectory  were  performed  in  the  Gromacs  and
VMD software packages [37].  Clustering of MD trajectory
frames was carried out for the Cα atoms of the model using
the gmx cluster module and the GROMOS algorithm, app-
lying  a  threshold  value  of  rmsd=1.5A.  As  a  result,  81
clusters were obtained with a maximum occupancy of 6240
frames  out  of  20,000  frames  of  the  trajectory.  For  a  full-
length  eIF4E1  potato  model,  a  molecular  surface  with
coloring  according  to  the  Wimley-White  ΔG  water-
membrane hydrophobicity scale [38] was constructed and
visualized in the MolStar program [39]. Visualization of the
obtained  data  was  carried  out  using  the  Inkscape  vector
graphics program (https://inkscape.org/)  and the software
complexes of molecular graphics PyMOL and MolStar.

2.4. Plasmid Design
Sequences  of  eIF4E1  (1-696  b.p.)  and  eIF4E1-49aa

(145-696 b.p.) were amplified from cDNA of the Solanum

https://inkscape.org/
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tuberosum cultivar Zhukovskiy ranniy. A modified pET32a-
GG-ΔTrx  vector  was  used  for  cloning.  The  thioredoxin
located between the two NdeI sites was removed; the BsaI
recognition site after the enterokinase site was also added
to  the  plasmid,  while  preserving  the  triplet  encoding
alanine between the enterokinase site  and the BsaI  site.
The  amplicons  and  vector  were  treated  with  BsaIHF-v2
(NEB) restrictase and then ligated using a highly active T4
DNA ligase by the Golden Gate method (according to the
manufacturer’s  protocol).  The  introduction  of  restriction
sites was carried out to obtain a more user-friendly vector.
The  nucleotide  sequence  of  eIF4E1-49aa  (145-696  b.p.)
was subcloned into  the expression vector  pET22b at  the
restriction  sites,  NcoI  and  XhoI,  before  the  sequence  of
the  signal  peptide.  This  signaling  peptide  is  intended  to
facilitate the movement of the protein into the periplasmic
space  [9].  All  plasmids  were  sequenced.  Each  of  the
resulting genetic constructions carries a 6His-tag to faci-
litate affine purification.

2.5. Analytical Induction and Protein Isolation
E. coli strains BL21(DE3) (Novagene), BL21(DE3) Star

(Novagene),  BL21(DE3)pRARE(Novagene)  (Cm),  Tuner
(DE3) (Novagene), Origami (Novagene) (Kn+Tet), SHuffle
®T7(Novagene)  (Str),  and  C41(DE3)  (Novagene)  were
transformed  by  plasmid  pET22b-eIF4E1-49aa(Amp)  and
grown  on  the  selective  agar-media  during  16  h  +37  °C.
One colony from the agar plate was transferred into 10 ml
selective  Luria-Bertani  (LB)  medium  and  incubated  in  a
shaker at +37 °C 180 vol.\min. When the optical density of
OD590  reached  ≈0.6–0.8,  the  inductor  was  added  to  the
final  concentration  of  0.5  mM  isopropyl-β-D-thiogalacto-
side (IPTG). Cells were incubated during 3 h at +37 °C or
20 h at +20 °C. The expression level was checked using
SDS-PAGE. The cells were precipitated by centrifugation
and then resuspended in buffer (10 mM Tris HCL pH7.5.
250 mM NaCl, 10% glycerol) with the addition of DNase
and PMSF. The cell suspension was homogenized by soni-
cation. To avoid overheating during sonication, a container
with  a  suspension  of  cells  was  placed  into  watered  ice.
After homogenization, the suspension was centrifuged and
the presence of protein in soluble and insoluble fractions
was determined by electrophoresis. The target protein was
verified by mass spectrometry.

The calculation of the expected molecular weight of the
protein,  the  coefficient  of  extinction,  and  the  isoelectric
point  was  carried  out  using  the  Biochemistry  Online  tool
(https://vitalonic.narod.ru/biochem/algorithm.htm).

3. RESULTS AND DISCUSSION

3.1.  Overview  of  Protocols  of  eIF4E  Isolation  for
Crystallization

To begin with, we analyzed purification protocols of hu-
man, mouse, yeast, nematode, wheat, pea, and melon eIF4E,
which were successfully crystallized [40-44]. All mentioned
eIF4E proteins were N-terminally truncated: 1-51aa (amino
acids) were removed in melon eIF4E (UniProtKB Q00LS8),
1-50 aa were removed in pea eIF4E (UniProtKB Q0GRC4),
1-36 aa were removed in wheat eIF4E (UniProtKB P29557),

1-28 aa were removed in mouse eIF4E (UniProtKB P63073),
and 1-30 aa were removed in nematode eIF4E (UniProtKB
O61955). Purification protocols for these proteins are very
similar.  The  E.  coli  strain  Rosetta  (DE3)  pLysS  (Novagen)
was used for the expression of melon, pea, and wheat eIF4E,
and the strains HB101(DE3) and BL21(DE3) Star were used
for  the  expression  of  mouse  and  nematode  eIF4E,  accor-
dingly.  Expression  strains  with  plasmids  that  encode  rare
tRNAs are often used to induce the synthesis of eukaryotic
proteins in the prokaryotic system. All protocols used LB me-
dium, IPTG at a concentration between 0.4 and 0.6 mM, and
a sonication or a French press as the homogenization met-
hod. Nematode and melon eIF4E were coexpressed with the
eIF4G  fragment.  Accumulation  of  the  target  protein  in
inclusion  bodies  and  its  isolation  under  denaturing  condi-
tions  was  reported  only  for  the  mouse  N-terminally  trun-
cated eIF4E. Renaturation of this protein does not prevent
its crystallization [42, 45].

3.2.  eIF4E  Modeling  and  Design  of  Expression
Vectors

Mobile  elements  in  the  structure  of  proteins  often
prevent  their  crystallization.  The  N-terminal  fragment,
which was deleted in the mentioned eIF4E, is unstructured
and  mobile.  It  was  shown  in  the  structure  of  full-length
eIF4E obtained in the NMR experiment (PDB code: 4B6U).
The  absence  of  this  fragment  in  the  recombinant  protein
should  not  affect  its  functional  activity  or  the  integrity  of
the globular part, but at the same time, the possible role of
this  fragment  in  the  interaction  of  eIF4E  with  eIF4G  or
other molecules cannot be excluded.

Fig.  (1).  The  model  of  Solanum  tuberosum  eIF4E1.  The  blue
color  indicates  the  N-terminal  fragment  (1-48  aa),  which  is
missing in the shortened version of the protein (eIF4E1-49aa).

In this regard, we also started working with a shortened
version of eIF4E1 for the following crystallization. Using the
previously obtained model, we determined the boundaries
of the N-terminal mobile unstructured part and the globular
part of eIF4E1: 1-48 and 49-233, accordingly (Fig. 1). The

N
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shortened version of eIF4E is referred to as eIF4E1-49aa in
the following text. At the same time, for functional experi-
ments,  we needed both a full-length and a shortened ver-
sion of  the target protein.  Therefore,  we obtained several
variants of vectors encoding both the full-length and shor-
tened versions of eIF4E.

The  sequences  encoding  eIF4E1-49aa  and  full-length
eIF4E1 were cloned into the expression vector pET32a-GG-
ΔTrx. As a result, pET32a-GG-ΔTrx-eIF4E1-49aa and pET32a
-GG-ΔTrx-eIF4E1  plasmids  were  obtained.  Using  the  first
plasmid  enabled  us  to  get  the  target  protein  with  an  esti-
mated molecular weight of 25.8 kDa. This variant includes a
6His-tag,  thrombin  cleavage  site,  S-tag,  and  enterokinase
cleavage site at the N-terminus (Fig. 2). Additionally, using
the pET32a-GG-ΔTrx-eIF4E1 plasmid allowed us to get the

target  protein with an estimated molecular  weight  of  30.8
kDa.  This  variant  of  the  protein  contains  the  same  N-ter-
minal  sequence  as  previously  mentioned  (Fig.  2).  This  de-
sign  allows the  removal  of  the  tag  during one of  the  puri-
fication steps.

For  the  expression  of  full-length  eIF4E1  and  eIF4E1
-49aa, we used the BL21(DE3)-pRARE strain that has an
additional plasmid encoding rare tRNAs [46]. One poten-
tial  cause  of  protein  accumulation  in  inclusion  bodies  is
the misincorporation of amino acids, which can result in
improper folding. Expression of full-length eIF4E1 in this
strain during 3 h at +37 °C and 20 h at +20 °C led to the
formation of a soluble form of full-length eIF4E1 (Fig. 3).
In contrast, under the same conditions, eIF4E1-49aa accu-
mulated in inclusion bodies.

Fig. (2). Schematic representation of the expression plasmids and the primary sequence of the target proteins. Different colors on the
circle indicate the main elements, located between the T7 promoter and the terminator. The same colors indicate the corresponding
elements on the primary structure of  the protein.  Scissors indicate the place where the protease cut the protein.  A  –  Scheme of the
plasmid encoding full-length eIF4E1 and the protein primary sequence; B – Scheme of the plasmid encoding eIF4E1-49aa and the protein
primary sequence.
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Fig. (3). Electrophoregrams of the samples obtained after analytical induction in the strain BL21(DE3) pRARE. Odd numbers correspond
to samples of supernatant after cell sonication; even numbers correspond to samples of debris after cell sonication. 1 and 2 correspond to
full-length eIF4E1; 3 and 4 correspond to eIF4E1-49aa; M – protein molecular weight markers. A – protein expression during 2 h at +37
°C; B – protein expression during 3 h at +37 °C; C – protein expression during 20 h at +20 °C.

Fig. (4). Schematic representation of the expression plasmid pET22b and the primary sequence of eIF4E1-49aa. Different colors on the
circle indicate the main elements, located between the T7 promoter and the terminator. The same colors indicate the corresponding
elements on the primary structure of the protein.

Isolation of proteins from inclusion bodies is not an im-
possible task.  However,  this  complicates the isolation pro-
cess and does not guarantee that the target protein will re-
fold correctly and will be functionally active. In this regard,
we  next  modified  the  genetic  construct  to  obtain  eIF4E1
-49aa  in  a  soluble  form.  Since  the  presence  of  additional
tags (despite the possibility of getting rid of them) is unde-
sirable  for  crystallization  experiments,  we  selected  the
expression vector pET22b, which does not code sequences
of long tags and sites for protease digestion. The sequence

encoding  eIF4E1-49aa  was  cloned  into  this  vector.  As  a
result, the pET22b-eIF4E1-49aa plasmid was obtained. This
construction  enabled  us  to  get  the  target  protein  with  an
estimated  molecular  weight  of  22.3  kDa.  This  variant
includes a 6His-tag at the C-terminus and 22 aa signal pep-
tide at the N-terminus, which is expected to help the protein
to be released into the periplasmic space (Fig. 4).

In our attempts to get soluble SteIF4E1-49aa, we tried
different  E.  coli  strains  and  growth  conditions.  Analytical
induction of synthesis of eIF4E1-49aa from pET22b plasmid
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in strains BL21(DE3) and BL21(DE3)-pRARE during 3 h at
+37 °C and 20 h at +20 °C did not lead to the production of
the soluble protein (Fig. 5).

Lowering  the  temperature  slows  down  the  process  of
protein  synthesis,  reducing  the  likelihood  of  translational
errors  and  potentially  improving  protein  solubility.  How-
ever, in our case, it was ineffective. Another factor contri-
buting to strong protein aggregation and, consequently, its
accumulation  in  inclusion  bodies  is  the  presence  of  un-
paired  cysteine  residues  in  the  protein  structure.  The
Shuffle and Origami E. coli strains were created to improve
the accuracy of the formation of disulfide bonds and were
also selected for our experiment [47, 48]. We also used the
E. coli strain C41(DE3), which is recommended for the ex-
pression  of  toxic  proteins,  and  the  strain  Tuner  (DE3),

which  is  suitable  for  toxic  and  insoluble  proteins.  Unfor-
tunately, all these strains did not yield a positive result for
the short version of SteIF4E1 (Fig. 5).

The  full-length  version  of  eIF4E1  was  produced  in
soluble  form under  standard  conditions  (Table  1)  without
the need for further optimization. The presence of any tags
at the N- or C-end of the eIF4E1-49aa, lowering of the incu-
bation temperatures, and using different E. coli strains had
no positive effect on the solubility of eIF4E1-49aa (Table 1).

The  sequence  of  SteIF4E1  N-terminal  part  (1-48  aa)
(MATAEMERTTSFDAAEKLKAADAGGGEVDDELEEGEIVEE
SNDTASYL) does not show any similarity with any known
signaling  peptides  sequence.  At  the  same  time,  experi-
mental  data  suggest  that  the  N-terminal  fragment  (1-48
amino acids) protects the protein from aggregation.

Fig. (5). Electrophoregrams of the samples obtained after analytical induction of the eIF4E1-49aa in different strains. Odd numbers
correspond to samples of  supernatant  after  cell  sonication;  even numbers correspond to samples of  debris  after  cell  sonication.  M –
protein  molecular  weight  markers.  A  –  1,  2,  3,  4  –  strain  BL21(DE3):  1,  2  –  protein  expression during 3  h  at  +37 °C,  3,  4  –  protein
expression during 20 h at  +20 °C.  5,  6,  7,  8,  –  strain BL21(DE3)Star:  5,  6 –  protein expression during 3 h at  +37 °C,  7,  8 –  protein
expression during 20 h at +20 °C, B – strain BL21(DE3) pRARE: 9, 10 – protein expression during 20 h at +20 °C; C – strain C41(DE3),
11, 12 – protein expression during 20 h at +20 °C. D – strain Shuffle: 13, 14 – protein expression during 3 h at +37 °C, 15, 16 – protein
expression during 20 h at +20 °C. E – strain Origami: 18, 17 – protein expression during 20 h at +20 °C. F – strain Tuner(DE3): 19, 20 –
protein expression during 3 h at +37 °C, 20, 21 – protein expression during 20 h at +20 °C.
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Table 1. Comparison of the results of analytical induction.

Protein Vector Strain
Result

37 °C 3 h 20 °C 20 h

eIF4E1-49aa pET22b

BL21(DE3) Insoluble Insoluble
BL21(DE3) pRARE Insoluble Insoluble
BL21(DE3)Star Insoluble Insoluble
C41(DE3) - Insoluble
SHuffle There is no induction
Origami - Insoluble
Tuner (DE3) There is no induction

eIF4E1-full pET32a-GG-ΔTrx BL21(DE3) pRARE Soluble Soluble
eIF4E1-49aa pET32a-GG-ΔTrx BL21(DE3) pRARE Insoluble Insoluble
Note: “-” undetermined.

3.3. Structural Interpretation of the Influence of the
N-Terminal Fragment on Protein Solubility

These data can be interpreted from a structural point of
view  using  molecular  modeling  and  molecular  dynamics
methods. A comparative analysis of potato eIF4E1 and hom-
ology  protein  models,  both  experimental  and  theoretical
(including those generated using the latest  version of  the
Alphafold3  algorithms),  revealed  the  ability  of  different
regions of the unfolded N-terminal fragment to form alpha
helices.

According  to  the  results  of  molecular  modeling  and
molecular dynamics studies, this fragment is able to inter-
act  with  the  globular  part  of  the  protein,  forming  stable
contact  with  a  section  of  its  dorsal  surface  (Fig.  6).  The
dorsal surface of eIF4E forms part of the eIF4G binding site
and is  rather hydrophobic.  The exposition of  such kind of
hydrophobic surfaces to a solvent (which is the case for the
models with the truncated N-terminal part) could cause the
aggregation  of  proteins  in  a  water  solution.  The  cluster
analysis  of  the  200ns  MD  trajectory  for  the  intact  factor
gives  us  the  most  stable  conformation  for  the  N-terminal
part in this experiment. This example shows the ability of
the N-terminal fragment to shield the hydrophobic region of
the eIF4E globule surface, extending the area of the hydro-
philic  one.  This  could  be  the  reason  for  the  increased
solubility  of  the  intact  protein  compared to  the  truncated
one. Thus, the above-mentioned interaction of a part of the
N-terminal  fragment  with  the  eIF4E  dorsal  surface  can
prevent  aggregation,  preserving  the  protein  in  a  soluble
form.

If we take a look at the same region of eIF4E from other
organisms, we will also find the hydrophobic spot (Fig. 1S).
The intensity of these regions can explain the tendency of
the proteins to aggregate.

A.  Cartoon  representation  of  the  most  stable  confor-
mation of the model of full-length eIF4E1 from the 200ns
molecular  dynamic  trajectory.  The  view  from  the  cap-
recognizing loop is on the left.  The view from the eIF4G
binding site is on the right. The gray color shows the glo-
bular  part  of  the  factor.  The  green  color  shows  the
N–terminal  fragment  of  the  factor,  which  was  initially
poorly structured and adopted a conformation during the
MD experiment.

Fig. (6). Possible role of the N-terminal fragment in the extension
of the hydrophilic surface of eIF4E1.

B. Cartoon representation of the models of full-length
eIF4E1  (left)  and  eIF4E1-49aa  (right),  viewed  from  the
back  side.  The  elements  of  the  secondary  structure  are
colored:  α-helixes  are  highlighted  in  red,  β-strands  are
highlighted in slate, and loops are highlighted in white.

A

B

C

90°
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C. Surface representation of the models of full-length
eIF4E1  (left)  and  eIF4E1-49aa  (right)  from  the  dorsal
view. The surfaces are colored according to the Wimley -
White ΔG water-membrane hydrophobicity scale [38].

CONCLUSION
The  full-size  version  of  eIF4E1  obtained  in  bacterial

cells is soluble. The shortened version of eIF4E1 (eIF4E1
-49aa) accumulates in inclusion bodies. The presence of a
hydrophobic  region  on  the  surface  of  the  molecule  pro-
vides a tendency for the protein to aggregate. This is due
to  the  fact  that  the  N–terminal  fragment  of  the  full-size
eIF4E1 variant interacts with the hydrophobic surface of
the globule, which makes it more hydrophilic, thereby pre-
venting aggregation. Using the method of molecular mode-
ling and molecular dynamics, it is possible to identify such
hydrophobic  interface  regions  and  find  a  way  to  shield
them. This approach will make it possible to obtain aggre-
gation-prone proteins containing hydrophobic regions in a
soluble form.
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Fig. (1S). Surface representation of a few members of
the eIF4E family from the dorsal view.

The surfaces are colored according to the Wimley–White
ΔG water-membrane hydrophobicity scale [38]. A – Crystal
structure of eIF4E from Cucumis melo; B – Crystal structure
of  eIF4E  from  Drosophila  melanogaster;  C  –  Crystal
structure  of  eIF4E  from  Mus  musculus;  D  –  Crystal
structure  of  eIF4E  from  Pisum  sativum.
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