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Abstract:
During the last few years, advancements in the areas of biochemistry, the science of the material world, engineering,
and  computer-aided  testing  have  been  directed  toward  the  development  of  high-throughput  tools  for  profiling
information encoded in genes. Single-cell RNA sequencing (scRNA-seq) tools are capable of examining sequence data
from individual cells, revealing population variety and allowing exploration of cell conditions and transformations
with extreme resolution. These tools can potentially identify cell subtypes or gene expression fluctuations that are
obscured  in  mass  sequencing  processes,  which  provide  population-averaged  evaluations.  However,  a  major
disadvantage of this tool is the inability to pinpoint location-related details of the RNA transcriptome, as this requires
tissue detachment and cell isolation. Location-based transcript determination represents an advancement in medical
biotechnology, as it can identify molecules, such as RNA datasets, in their intact physical placement within tissue
segments with spatial context at the single-cell scale. This capability is highly advantageous compared to traditional
single-cell  sequencing  techniques.  These  approaches  offer  valuable  insights  into  various  sub-disciplines  of  the
biomedical field, including neurology, embryology, carcinoma studies, immune cell investigation, and histological
activities.  This  review  primarily  focuses  on  single-cell  sequencing  methods,  technology  development,  observed
challenges, different expression data analysis mechanisms, and their applications in various areas, such as cancer
research,  microbes,  the  central  nervous  system,  reproductive  organs,  and  immunobiology.  It  underscores  the
importance of sequencing tools at the single-cell level for characterizing highly dynamic individual cells.
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1. INTRODUCTION
During the last few years, advancements in the areas

of  biochemistry,  the  science of  the  material  world,  engi-
neering,  and  computer-aided  testing  have  been  directed
towards the advancement of high-throughput tools for the
purpose  of  profiling  information  encoded  in  genes  and
sequencing  figures  from  different  biological  specimens.
Technologies  are  now  capable  of  sequencing  many
fragments  of  DNA  in  parallel,  such  as  RNA  sequencing,
enabling  an  intense  and  full  understanding  of  complex

events  involved  in  an  organism,  including  the  whole
organism  development  process,  the  re-establishment  of
damaged  tissue  into  normal  structure  and  function,  and
carcinogenesis  [1].  The  recent  advancements  in  genetic
testing  and sequencing  technology  have  encouraged the
progression  of  applying  sequencing-supported  tools  for
exploring genomic heterogeneity and fluctuations within a
body  system  [2].  Currently,  there  are  numerous
techniques  used  for  gene  expression  profiling.  Among
these techniques, the RNA-sequencing mechanism (RNA-
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seq)  permits  transcript  investigation  with  extraordinary
precision and breadth,  leading to the discovery of  newly
identified RNA species and enhancing our understanding
of transcriptomic changes [3, 4].

Recently,  low-input RNA-sequencing techniques have
been  developed  to  be  used  for  studying  single-cell
characterizations [5]. Single-cell RNA-sequencing (scRNA-
seq)  tools  are  capable  of  examining  sequence  data  from
each  cell.  They  reveal  the  within-population  variety  and
permit  the  exploration  of  cell  conditions  and  transfor-
mations  with  extreme resolution.  These  tools  potentially
identify cell sub-types or gene expression fluctuations that
are obscured in mass sequencing processes, which provide
population-averaged evaluations [6, 7].

Investigating  every  individual  cell  through  global
mechanisms  has  the  capability  to  transform  our
understanding of full organisms. From that point on, cell
ancestry can be traced, and variability within a tissue can
be  summarized  with  extraordinary  resolution  [8].
Exploring cells from tissue at the individual level creates a
special scope to assess the interaction between inherent
cellular  activities  and  external  signals,  such  as  the
surrounding circumstances or adjacent cellular interplays,
in determining cell destiny. On the other hand, single-cell
exploration is highly beneficial in medical centers, helping
to  investigate  how  an  “outlier  cell”  may  influence  the
outcome  of  disease  progression  [9],  medication  or  anti-
microbial  resistance  [10,  11],  and  tumor  reversion  [12].
Moreover, since most cells from life forms are unable to be
cultured  in  external  environments  (often  referred  to  as
“microbial  dark  matter”),  examination  at  the  single-cell
level  holds  the  opportunity  to  discover  unrecognized
species  or  governing  mechanisms  of  biotechnological  or
therapeutic importance [13].

High-efficiency  single-cell  RNA profiling  has  enabled
extraordinary  insight  into  the  cellular  heterogeneity  of
tissues across various life forms. Gene expression analysis
using bulk tissue considers and characterizes all the cells
in  a  way  that  treats  identical  bodies  similarly,  thereby
ignoring the statistical probability of gene expression [14,
15]. To address issues related to the probabilistic nature
of gene expression, single-cell sequencing techniques are
highly suitable.

Single-cell  sequencing  techniques  involve  the
sequencing of the genetic material from each isolated cell
to obtain genomic, transcriptomic, or multi-omics data at a
single-cell  scale,  revealing  cell  population  heterogeneity
and  cellular  developmental  associations.  Ordinary
sequencing techniques struggle to dissect the median of
numerous  cells,  cannot  explore  a  small  number  of  cells,
and  mask  important  cellular  variability  information.  In
contrast  to  conventional  sequencing  tools,  single-cell
sequencing  tools  are  essential  for  dissecting  gene
expression  variability  among  individual  cells  [16].
Differentiating  a  limited  number  of  cells  in  terms  of
quantity and tracing out cell maps are key capabilities of
single-cell  sequencing  techniques.  Meanwhile,  in  2013,
single-cell  sequencing  techniques  were  recognized  as  a
significant innovation by being named “Nature Methods”

as  the  yearly  innovation  [17].  However,  previous  single-
cell sequencing protocols were limited to adoption due to
their expensive implementation costs and the considerable
effort required to apply the techniques.

The global analysis of single cells has been performed
through  significant  advancements  in  the  sensitivity  of
scientific  instruments  and  the  increasing  automation  of
every  step,  from  specimen  preparation  to  information
analysis.  This  enables  the  detection  of  gene  expression
dynamics at a tiny level within the cell population. High-
throughput  technologies  now  allow  for  the  rapid
sequencing  of  the  genomes  of  many  single  cells  in  a
parallel fashion, generating large amounts of information
in  short  time  periods  [18].  Alternatively,  the  proteins
expressed can be identified by utilizing techniques, such
as fluorescence and mass cytometry  [19].  Exploration of
messenger RNA in single cells has been initiated through
a  variety  of  probe-based  techniques,  including  reporter
fusion  to  fluorescent  proteins,  fluorescence  in  situ
hybridization  (FISH),  quantitative  real-time  PCR  (qRT-
PCR), and microarrays [20]. Many of these techniques can
provide  an  assessment  of  the  expression  variability  of
multiple  genetic  materials  in  a  parallel  fashion.

Generally, this review primarily focuses on single-cell
sequencing methods, technology development, challenges,
and their  applications in various areas,  including cancer
research,  microbiology,  the  central  nervous  system,
reproductive  organs,  and  immunobiology.  It  emphasizes
the importance of sequencing tools at the single-cell level
for  characterizing  highly  dynamic  individual  cells.
However, single-cell RNA sequencing tools currently face
challenges related to skilled workforce and high profiling
costs, which limits their usage in transcriptomic studies.

1.1. Single-cell RNA Sequencing
The single-cell  RNA sequencing method analyzes  the

gene expression profiles of individual cells generated from
homogenous and heterogeneous population sources. This
method isolates individual cells, typically by techniques of
encapsulation or  flow cytometry,  and then amplifies  and
sequences the RNA transcripts from each cell separately.
This  high-resolution  mechanism  allows  researchers  to
characterize cell types, states, and subpopulations. Single-
cell  RNA sequencing  techniques  can  also  reveal  cellular
heterogeneity  and  rare  cell  populations  that  might  be
masked  in  bulk  RNA-seq  data  methods.  The  single-cell
RNA  sequencing  method  applies  to  numerous  investi-
gations  in  life  science,  like  comparing  gene  expression
profiles  of  individual  cells.  Researchers  can  investigate
and characterize novel or rare cell populations, as well as
further  refine  known  cell  types  and  study  cellular
differentiation,  lineage  tracing,  and  developmental
trajectories  in  different  organisms,  providing  important
information  on  the  regulatory  pathways  controlling
cellular  fate  decisions  [21].

2. FROM BULK TO SINGLE-CELL TRANSCRIPTOMIC
DISSECTION

Transcriptomic  examination  at  the  individual  cell
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resolution  level  was  initiated  around  20  years  ago  by
Norman  Iscove,  who  utilized  exponential  amplification
techniques  of  single-cell  cDNAs  via  polymerase  chain
reaction.  Additionally,  James  Eberwine  pioneered  the
straightforward amplification  of  cDNAs through T7 RNA
polymerase-based  transcription  outside  the  living  body.
The  mechanisms  mentioned  above  have  accelerated  the
exploration  of  deeper  molecular  systems  involved  in  the
developmental process and the functioning mechanisms of
the vertebrate nervous system, particularly because these
cells  are  among  the  most  varied  class  of  cells.  In  such
cases,  transcriptomes  at  the  single-cell  or  lower-level
determination in a prolonged axon can provide descriptive
insights  [22,  23].  Subsequently,  the  implementation  of
mass-produced, accessible, high-density DNA microarray
chips  accelerated  the  advancement  in  individual  cell
microarrays  [24].

The latest findings have demonstrated significant cell-
to-cell  transcriptomic  dissimilarities  [25].  Even  among
ancestrally  invariant  cell  clusters,  there  are  significant
transcriptomic  differences.  Consequently,  mass  assess-
ments  can  obscure  fundamental  cellular  variability  [26]
and  generate  averaging  biases,  thereby  obscuring  the
reality  of  gene  expression  dynamics  among  cell

populations  in  scientific  investigations.
So  far,  almost  all  transcriptomic  analyses  are

conducted at a “population level,” consistently resulting in
mean transcriptomes of numerous cells. However, under
certain  conditions,  such  as  with  stem  cells,  malignant
tumor  cells,  and  other  scarce  populations,  there  is
difficulty  in  obtaining  sufficient  material  to  perform
determinations  at  such  a  degree.  Furthermore,  mass
techniques  are  unable  to  investigate  the  ultra-fine  but
biologically  significant  variability  between  apparently
similar  cells.  Despite  each  vertebrate  animal  cell  being
estimated  to  accommodate  approximately  105-106

expressed  mRNA  genes  [27],  the  relative  percentage  of
various  transcriptomic  groups  in  a  population  varies
significantly  [28].  Moreover,  a  quantifiable  characteri-
zation in yeast [29] has proven that most messenger RNAs
are  available  in  a  small  number  of  less  than  5
transcriptome duplicates within each cell, and the majority
long non-coding RNAs are present surprisingly in less than
0.5 duplicates per cell. Moreover, in certain bacteria, the
mean copy number of messenger-RNA in Escherichia coli
is 0.4 per cell [30]. Fig. (1) presents the workflow for mass
and single-cell RNA sequencing process in relation to data
generated between them.

Fig. (1). Mass and single-cell RNA sequencing technique procedures.
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The  single-cell  RNA  sequencing  method  has  been
proven  effective  in  characterizing  multiplex,  varied  cell
populations, allowing for a comprehensive understanding
of  population  composition  and  the  discovery  of  new
subtypes  and  rare  cell  types  [31,  32].  In  situations
involving  dynamic  processes,  the  reorganization  of  cell
paths  from  single-cell  profiling  data  has  facilitated  the
investigation  of  short-term,  intermediate  cell  states  and
has helped to identify key regulatory genes [33].

Additionally,  the  single-cell  RNA  sequencing  method
also  holds  great  promise  for  understanding probabilistic
transcriptional bursting and deciphering gene regulatory
systems.  However,  deriving  system  hypotheses  from
single-cell  RNA  sequencing  data  is  computationally
challenging  and  difficult  to  confirm.  Inferred  system
models should, therefore, be rigorously characterized and
practically  validated  where  possible.  Moreover,  a
particular  mRNA  may  be  expressed  at  various  scales
within  a  cell  population  either  due  to  deterministic
reasons as it is part of a regulated cellular process or due
to random fluctuations in expression levels among cells, a
phenomenon  also  known  as  transcriptional  noise,  which
should  not  be  overlooked as  insignificant  because  it  has
significant implications in cell fate determination [34].

RNA-seq of single cells enables researchers to uncover
the unique characteristics of biological cells at individual
levels  within  complex  tissues  and  organ  systems.  It  also

aids  in  understanding  the  response  of  cellular  subpopu-
lations  to  environmental  conditions.  RNA-seq  has
facilitated  the  initial  determination  of  the  extent  of
transcriptomic variability, encompassing both coding and
non-coding  RNAs,  across  a  genome-wide  scale.  The
techniques  of  single-cell  RNA  sequencing  will  similarly
assist in deciphering time-related transcriptional networks
during  transitional  mechanisms  [7]  or  when  cells  are
exposed  to  the  external  environment  [34-37],  each  of
which may be obscured at a population scale (Table 1).

3.  PROGRESS  IN  SINGLE-CELL  RNA  PROFILING
TECHNIQUES AND INNOVATION

Progress  in  the  field  of  life  science  investigation
continues  to  deepen,  with  researchers  working  with
single-cell RNA sequencing tools making advancements in
minimizing  dissecting  costs.  This  progress  enables
researchers to delve deeper into the molecular workings
of  individual  cells,  advancing  our  understanding  at  the
cellular level. As proposed by other findings [35], a single-
cell  integrative  label  sequencing  tool  (SCI-seq)  can
simultaneously construct multiple single-cell  information
libraries  and  analyze  heterogeneity  in  body  cell  copy
numbers.  This  method  maximizes  the  number  of  tissue
cells  characterized  while  minimizing  the  cost  of  library
preparation,  providing  significant  advantages  for  the
analysis  of  body  cell  heterogeneity.

Table 1. Bulk RNA sequencing vs. single-cell RNA sequencing summary.

No. Bulk RNA Seq Single-cell RNA Seq

1. Measures the average gene expression across heterogeneous cells Analysis of gene expression profiles of individual cells
2. RNA from many different cell types is extracted RNA from individual cells extracted
3. All RNA transcripts pooled together Each RNA transcript is investigated separately
4. All sequenced together Sequenced individually
5. Low-resolution approach High-resolution approach
6. Mask the important information available at a scale cellular level Can show cellular heterogeneity and rear cell populations
7. Gene expression profiling Study cellular heterogeneity
8. Transcriptome annotation Cell type identification and characterization

Fig. (2). Timeline of improvements in single-cell sequencing methods as a base for technology progressions to the next level.
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According  to  an  investigation  [36],  a  new  single-cell
whole-genome amplification technique has been innovated
that  enables  the  examination  of  copy  number  variations
(CNV)  at  the  kilobase  level  and  further  allows  for  the
efficient characterization of mutations in various diseases.
Another tool developed [37] is mainly based on sequencing
single  cells  by  a  parallel  method  known as  scCOOL-seq.
This  technique  enables  the  concurrent  detection  of
individual  cell  genomic  conditions  or  nuclear  micro-
environment  organization,  copy  number  heterogeneity,
repetition of chromosome sets, and analysis of methylated
DNA. It is capable of revealing various activities and forms
of  genomic  conditions  and  DNA,  including  heritable
epigenetic methylation, where a methyl group attaches to
a  specific  spot  on  a  gene.  Other  studies  [38]  designed
mechanisms for Topographic Single-Cell RNA Sequencing
(TSCS), enabling precise spatial positional data for every
individual  cell.  This  method  has  a  high  degree  of
sensitivity to investigate and express the particular nature
of each cancer cell's positional information, allowing the
study  of  the  occupation  and  malignant  nature  of  cancer
cells.  Fig.  (2)  shows  events  arranged  based  on  the
progression  and  advancements  of  single-cell  RNA
sequencing  techniques.

Another  mechanism  describes  a  highly  efficient  and
minimally divergent single-cell RNA sequencing technique
that utilizes droplet-based microfluidics to isolate, expand,
and barcode the genetic material of individual cells. This
methodology  allows  for  a  broader  characterization  of
genetic  material  across  various  cell  populations  [39].
Additionally, Microwell-seq, developed by another investi-
gator  [40],  is  an  advanced  and  cost-effective  single-cell
RNA  sequencing  methodology.  It  not  only  enhances  the
investigation  of  various  single-cell  RNA  tools  but  also
significantly reduces the cost of examination by employing
a series  of  dimensions  analyzed through single-cell  RNA
sequencing methods encapsulated within oil droplets. The
SPLiT-seq tool, developed based on the concept of a cost-
effective  combined  barcode,  is  capable  of  reducing  the
cost of  single-cell  RNA transcriptomic sequencing to the
one-cent level. By further lowering the price threshold for
single-cell characterization, this technology becomes more
accessible to researchers [41].

Currently,  there  are  no  standardized  single-cell
sequencing techniques, indicating that researchers choose
the method they follow based on their study objectives and
available options. Based on transcript coverage, single-cell
transcriptome sequencing tools currently utilized can be
grouped  into  different  types  [42]:  (i)  entire-length
transcriptome  sequencing  mechanism  (one  example-
MATQ-seq  [43],  SMART-seq2  [44],  ICELL8  [45]  and
SUPeR-seq  [46]),  (ii)  5′  -end  transcriptome  sequencing
techniques (for instance: STRT-seq ([47]), and (iii) 3′ -end
transcriptome  sequencing  technique  (one  prototype-
Chromium [48] 10X Genomics, Fluidigm C1 [49], Drop-seq
[50], in Drop ([51]).

Following an entire-length transcriptomic sequencing
method, there is a problem of strength of character, rate,
and sequencing price. On the contrary, the main problem

of sequencing cDNA is emphasizing either the 5′ or 3-end
transcriptome  of  the  DNA,  thus  lacking  the  ability  to
explore allele-related gene expression or alternative splice
fashion.  Various  techniques  rely  on  flow-activated  cell
sorting  (FACS)  for  arrangement,  including  MARS-seq,
which relies on a large starting volume [52] and becomes
impractical  when there is  minimal starting volume, such
as  with  fine-needle  aspiration.  Another  issue  with  using
the  flow-activated  cell  sorting  (FACS)  method  is  the
requirement  of  applying  antibody  beads  that  target
specific proteins for sorting. This creates challenges when
categorizing  rare  cell  subtypes  [53].  Thus,  each  method
has its own set of pros and cons that determine the 'depth'
of the data collection, which can significantly impact both
numerical and biological interpretations [54].

Single-cell  RNA  sequencing  is  not  a  'one-size-fits-all'
method, unlike mass sequencing mechanisms. The depth
of analysis can vary depending on the protocols followed,
types  of  cells  being  characterized,  isolation  techniques,
sequencing methods, and stringency of association during
library preparation [55]. The single-cell RNA sequencing
technique initially involves the isolation of individual cells
from  biological  samples.  However,  the  capability  to
capture  poses  a  significant  challenge  for  the  single-cell
RNA  sequencing  workflow.  Highly  sensitive  isolation
methods and skilled personnel are required to enhance the
accuracy of detecting transcriptome expression dynamics.
Nowadays,  a  variety  of  techniques  are  available  for
separating single cells from biological samples, including
limiting  dilution  techniques,  flow-activated  cell  sorting
(FACS), micromanipulation, laser capture micro-dissection
(LCM), and microfluidics [56-58].

The  limiting  dilution  method  employs  pipettes  to
separate  targeted  cells  from  heterogeneous  populations
through  the  process  of  dilution.  However,  a  major
drawback of using this technique is its limited productivity
compared  to  other  methods.  Micro-dissection  or
microinjection is a typical mechanism used to isolate cells
from specimens with minimal quantities of cells, such as
early-developing embryos or uncultured microorganisms.
However, using these methods is time-consuming and has
a  low  throughput.  Fluorescence-activated  cell  sorting
(FACS)  has  been  widely  utilized  to  select  targeted
individual  cells  but  requires  large  processing  volumes
(typically >10,000 cells) in suspension solution. However,
there are drawbacks associated with FACS, such as slow
sample processing speed. Laser capture micro-dissection
(LCM) is an advanced technique used to select individual
cells, primarily from solid tissue specimens, using a laser
mechanism assisted by a computer. The main advantage of
LCM  is  its  rapid  processing  speed  of  cell  samples.
However, a significant drawback of this technique is the
requirement  for  optical  microscopic  investigation  to
identify single cells within complex tissues, necessitating
expertise  in  cell  characterization.  Microfluidics  is
progressively becoming a well-known technique due to its
minimal  specimen  usage,  precise  fluid  control,  and  low
investigation  costs.  Each  of  these  single-cell  isolation
procedures  has  its  own  importance  and  demonstrates
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varying  levels  of  success  in  terms  of  isolation  efficiency
and clarity of the targeted cells [52, 58].

Various  scRNA-seq  procedures  may  have  their  own
advantages  and  disadvantages,  and  numerous  published
analyses have compared some of them extensively [59]. A
previous analysis illustrated that the Smart-seq2 method
can identify a huge quantity of expressed genes than other
forms  of  scRNA-seq  tools  along  with  CEL-seq2  [60],
MARS-seq [61], Smart-seq [62], and Drop-seq mechanisms
[63].  Currently,  Sheng  et  al.  demonstrated  that  an
additional  full-length  transcriptome  sequencing  method,
MATQ-seq,  could  outperform  Smart-seq2  in  analyzing
genes with minimal occurrence [43]. Compared to 3′-end
or 5′-end counting procedures, full-length single-cell RNA
sequencing techniques hold extraordinary significance in
investigating isoform usage, allelic expression characteri-
zation,  and  RNA  editing  due  to  their  comprehensive
coverage  of  the  transcriptome.  Moreover,  for  studying
lowly expressed transcripts that are inevitable, full-length
single-cell  RNA  methods  could  offer  advantages  over  3′
sequencing approaches [63].

Particularly, droplet-centered tools (for example, Drop-
seq  [50],  InDrop  [51],  and  Chromium  [48])  can
predominantly  give  a  huge  parallel  sequencing  of  single
cells  and  a  minimal  sequencing  price  for  each  cell  in
comparison with the entire-transcriptome single-cell RNA
sequencing.  Thus,  droplet-based  mechanisms  are  more
reliable  for  producing  numerous  quantities  of  cells  to
detect the cell sub-populations of sophisticated tissues or
cancer specimens. Notably, many single-cell RNA sequen-
cing tools can identify the two polyA+ and polyA− RNAs,
like  SUPeR-seq  [46]  and  MATQ-seq  [43].  These
mechanisms are crucial  for  sequencing long,  non-coding
RNAs and circular RNAs.

To estimate the technical differences between various
types of cells and spike-ins, such as External RNA Control
Consortium  (ERCC)  controls  [64],  Unique  Molecular
Identifiers  (UMIs)  have  become  widely  used  in  related
single-cell  RNA  sequencing  techniques.

RNA  spike-ins  are  RNA  transcripts  with  known
sequences  and  quantities  utilized  to  calibrate  the
measurements of RNA hybridization assays, such as RNA
sequencing. UMIs enable the theoretical enhancement of
total  molecular  counts.  Spike-ins  are  utilized  in  tech-
niques,  such  as  Smart-seq2  and  SUPeR-seq,  but  are  not
compatible with droplet-based techniques. However, UMIs
are predominantly used in 3′-end sequencing methods (like

Drop-seq  [50],  InDrop  [51],  and  MARS-seq)  [61].  As  a
result,  the  appropriate  single-cell  RNA  sequencing
approach  can  be  selected  in  experiments  based  on
practical  considerations  and  priorities,  including  the
number of cells to be sequenced and cost considerations.

3.1. Current Progress in Single-cell RNA Sequencing
Tools

Cells  from  organisms  were  investigated  in  the  16th

century. After numerous developments and the progress of
novel  techniques,  mechanisms  emerged  in  a  transition
from  simple  to  a  more  powerful  way.  While  the
introductory  microscope,  designed  by  Zacharias  Janssen
and  Hans  Lippershey  in  the  early  16th  century,  allowed
Robert Hooke and Anton van Leeuwenhoek to observe the
initial  living  cell  in  the  17th  century,  the  process  took
nearly  two  centuries  to  fully  reevaluate  cells,  regarding
them not only as the structural but also the functional unit
of life [65]. Preceding this time, a number of investigations
and techniques were performed with the desire to achieve
a higher-grade sense of perception and to investigate cells
within heterogeneous multicellular networks [66].

The  initial  visionary  and  practical  advancement  in
single-cell  RNA  sequencing  techniques  involved  [5]
sequencing  the  transcripts  of  single  blastomeres  and
oocytes.  The  idea  and  tools  carried  out  by  this  analysis
unlocked a novel mechanism for addressing the challenge
of scaling up the number of cells and generating agreeably
improved  RNA  sequencing  mechanisms  feasible  for  the
early  period.  Above  all,  prices  have  been  surprisingly
minimized while robotization and advancement have been
remarkably  accelerated.  All  these  procedures  have
culminated in more developed scRNA-seq mechanisms, yet
the  fundamental  idea  of  utilizing  single-cell  RNA
sequencing  remains  unchanged  [21].

In  the  case  of  humans,  single-cell  investigation  has
upgraded  detailed  awareness  of  developmental  and
biological  activity  in  our  body  systems  [67],  aging  [68],
and  a  number  of  disease  characterizations  like  tumor
development [69]. However, there is an issue in producing
universal  blueprints  for  single-cell  RNA  transcript
investigation, given that each method requires the user to
make  informed  judgments  to  obtain  interpretable
outcomes.  These  decisions  include  selecting  specimen
types,  determining  the  number  of  cells  and  preparation
methods, choosing single-cell RNA sequencing techniques
and sequencing protocols, and designing computational

Table 2. Summary of single-cell RNA sequencing technologies progressions.

Methods Applications in Single-cell RNA Sequencing

SCI-seq - Can simultaneously construct multiple single-cell information libraries and analyze heterogeneity in body cell copy number
scCOOL-seq - Sequencing single cells by parallel method and analysis of methylated DNA

TSCS - Enabling precise spatial positional data for individual cells
Microwell-seq - Significantly reduce the cost of examination
SMART-seq2 - Enable entire-length transcriptome sequencing mechanisms

Drop-seq and Chromium - Can give huge parallel sequencing of single cells
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analysis  frameworks  to  derive  insights  from  single-cell
datasets.  Essentially,  achieving  effective  single-cell  RNA
transcriptomic  analysis  with  interpretable  data  files  and
relevant scientific results can only be realized through the
use of well-defined experimental protocols (Table 2).

3.2.  Single-cell  Isolation  Process  and  Library
Preparation

Variations in RNA transcriptomic and gene expression
among  individual  cells  can  offer  crucial  insights  into
solving problems in tumor biology, neuroscience, stem cell
differentiation, immunology, and evolutionary biology. To
achieve  this,  the  first  step  involves  isolating  individual
cells  from tissues,  which  is  essential  for  capturing  high-
quality  single  cells  from  a  given  body  sample.  This
isolation  process  ensures  the  accurate  preservation  of
genomic  and  biochemical  processes  occurring  within
cellular  activities,  enabling  the  analysis  of  specific
genomic  and  molecular  operations  [70].  Conventional
transcriptomic,  epigenomic,  or  proteomic  analyses  from
bulk  RNA  or  DNA  specimens  can  only  provide  an
aggregate of information from tissues or organs, lacking
the  ability  to  detect  the  heterogeneity  present  among
individual  cells.  To  gain  a  deeper  understanding  of
variations  between  cells,  researchers  are  turning  to  the
approach  of  single-cell  RNA  sequencing  analysis,  which
can  provide  highly  granular  datasets  essential  for
precision  medicine  decision-making.  The  techniques  for
isolating  single  cells  and  capturing  their  profiles  vary
significantly depending on the organisms, tissues, or cell
types involved [71].

Before  embarking  on  single-cell  investigations,
researchers  must  isolate  individual  cells  from  tissue
samples.  Cell  separation  can  be  achieved  by  selecting
entire cells, isolating cell-specific nuclei or organelles, or
isolating  cells  expressing  specific  marker  proteins  [72].
The  primary  purpose  of  isolating  individual  cells,
particularly through parallel mechanisms, is to ensure that
each  cell  is  isolated  in  a  separate  reaction  mixture.
Specifically, all transcriptomes from each individual single
cell  are  uniquely  barcoded  before  being  converted  into
complementary DNAs (cDNA) [21].

Indeed,  single-cell  RNA  sequencing  methods  have
progressively revealed several intrinsic procedural issues,
such  as  'artificial  transcriptional  stress  responses.'  This
phenomenon indicates that separation mechanisms could
activate the expression of stress-related genes, leading to
synthetic  changes  in  cell  transcription  profiles.  This  has
been  confirmed  by  numerous  experimental  analyses.  An
investigation [73] confirmed that the protease separation
mechanisms at 37°C could induce the expression of stress-
related  genes,  resulting  in  practical  inaccuracies  and
potentially  leading  to  imprecise  cell  type  identification.

Following the procedure of converting mRNA directly
into  the  first  strand  cDNA,  the  generated  cDNA  is
amplified  using  polymerase  chain  reaction  (PCR)
techniques  or  test-tube  transcription  [57].  The  cDNA  is
synthesized from full-length mRNA transcriptomes using a
reverse  transcriptase  with  terminal  transferase  activity.

This  enzyme,  when  combined  with  a  second  “template-
switch” primer,  allows for the generation of  cDNAs with
two universal priming sequences. Once the individual cell-
barcoded cDNAs are produced from each isolated cell or
single nucleus, they can be sequenced using various high-
throughput sequencing techniques [21].

3.3.  Single-cell  Transcriptomic  Sequence  Data
Analysis

Due  to  the  expanding  scope  of  advanced  single-cell
RNA  sequencing  (scRNA-seq)  techniques,  including
clinical  specimens,  the analysis  of  these vast  volumes of
datasets  has  become  a  daunting  challenge  for  scientists
entering this field of study. Investigating single-cell RNA
sequencing  (scRNA-seq)  datasets  has  become  an
increasingly important aspect,  and today,  it  is  a primary
requirement  for  advancing  the  implementation  of  these
advanced techniques in life science and clinical studies. To
support  the  utilization  of  single-cell  RNA  sequencing
analysis  methods,  numerous  developers  have  made
significant  strides.  As  of  May  28th,  2021,  nearly  1000
different  bioinformatic  techniques  have  been  developed
and made available [74].

During the preparation of  single-cell  mixtures,  intact
cells  may  undergo  processes,  such  as  cell  death,
membrane  damage,  or  multi-cellular  adhesion,  due  to
inevitable natural conditions, experimental activities, and
practical  challenges.  To  eliminate  gene  expression
interference  from  low-quality  cells,  it  is  essential  to
perform  additional  quality  control  measures  using
appropriate techniques, like Seurat [75], Scran [76], and
Scanpy [77].

Different studies have shown that Seurat is one of the
most widely used techniques with integrated capabilities
for  purifying  poor-quality  cells.  Primarily,  the  following
quality  control  (QC)  metrics  should  be  used  to  decide
whether a cell  should be retained: the number of genes,
the  number  of  UMI  (transcripts),  the  proportion  of
mitochondrial  genes,  and  the  ratio  of  ribosomal  protein
genes in each individual cell. There is no perfect method
for setting the filter threshold, which largely depends on
the  cell  types  and  tissues  being  analyzed.  Other  studies
[78] purified cells with less or equal to 100 or greater or
equal to 6000 expressed genes, less or equal to 200 UMIs,
and  greater  or  equal  to  10%  mitochondrial  genes.  In
another  study  [79],  standard  cells  were  maintained
utilizing  the  following  framework:  (1)  200  less  than  the
overall amount of expressed genes per cell (nGenes) less
than 2500; (2) 300 less than the full amount of UMIs per
cell (nUMIs) less than 15000; and (3) proportion of UMIs
tracked to mitochondrial genes (MT%) less than 10%.

Similar  to  the  analysis  of  conventional  bulk  RNA
sequencing datasets, each cell is treated as an individual
sample  when  analyzing  single-cell  RNA  sequencing
datasets.  However,  the  raw  expression  data  cannot  be
directly used for downstream analysis due to differences
in expression levels among cells caused by systemic biases
or technical noise, such as variations in sequencing depth
and  transcript  capture  efficiency  for  each  cell.
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Normalization is essential to mitigate technical noise and
ensure  comparability  across  all  single  cells.  An
investigation  [80]  assessed  the  validity  of  seven
normalization techniques, such as BASiCS, GRM, Linnorm,
SAMstrt, SCnorm, scran, and Simple Norm.

The  scRNA-seq  dataset  contains  a  vast  number  of
features,  with  thousands  of  cells  in  a  specimen  and
millions  of  genes  expressed  in  every  single  cell.  The
majority  of  genes  in  each  cell  belong  to  housekeeping
genes, which are detected when there are no significant
variations in expression levels within each cell, and their
presence  can  obscure  the  true  biological  information.
Subsets  of  genes  that  exhibit  significant  cell-to-cell
differences  in  expression  levels  are  known  as  highly
variable genes (HVGs). HVGs not only identify biological
stimuli but also greatly accelerate downstream analysis of
individual  cell  RNA  sequencing  datasets  due  to  the
significant  reduction  in  computational  burden.  A  good-
quality  set  of  HVGs  should  include  genes  that  can
characterize  various  cell  types,  and  the  quality  of  HVGs
has a substantial impact on the accuracy of cell grouping.
Another  study  [81]  assessed  seven  techniques  for
characterizing  highly  variable  genes  (HVGs),  including
BASiCS, Brennecke, scLVM, scran, scVEGs, and Seurat. It
identified significant heterogeneities in the outcomes and
operational  times  of  various  methods.  Correlation  with
another tool, Scran, was able to identify a reliable number
of  HVGs  with  very  good  performance  and  independence
from the mean. Brennecke was found to exhibit stable and
consistent performance across a wide range of  datasets.
Scran and Seurat were highlighted as performing the best
across  a  portion  of  the  datasets.  Moreover,  BASiCS  and
scLVM_LogVar  were  observed  to  be  more  stable  than
other  techniques.

3.3.1. Data Preprocessing
The  fundamental  configuration  of  unprocessed

sequencing  datasets  for  single-cell  transcriptomes
comprises  FASTQ  and  BCL  formats,  depending  on  the
dataset's  origin  and  sequencing  platform.  Initially,  only
FASTQ data can be directly used for standard control. If
the unprocessed dataset is not in FASTQ format, the first
step  is  to  convert  it  into  FASTQ  format  using  relevant
techniques. FASTQ data can be generated from BCL data
using cellranger mkfastq, a pipeline that incorporates the
banded  bcl2fastq  program.  Specifically,  a  recognizable
CSV  matrix  dataset  with  a  minimum  of  three  columns
(lane, sample, and index) needs to be provided in addition
to the path of BCL extracts. Subsequently, FastQC can be
executed to assess the quality of the raw single-cell RNA
sequencing dataset [21].

3.3.2. Exploratory Analysis
To thoroughly uncover functional errors and biological

significance within a given cell population, it is crucial to
conduct functional enrichment analyses on a focused set
of  differentially  expressed  genes.  Global  analysis
approaches for activity enrichment, such as gene ontology
and  Kyoto  Encyclopedia  of  Genes  and  Genomes  (KEGG)
pathway  analysis,  are  also  beneficial  for  single-cell

datasets.  Numerous  methods  for  functional  enrichment
determination have been developed. A study conducted by
Huang  et  al.  comprehensively  differentiated  68  enrich-
ment  analysis  techniques  in  2009,  assessing  their
robustness  and  drawbacks  [82].

Additionally,  GSVA  (Gene  Set  Variation  Analysis)  is
widely applicable in the process of functional enrichment
analysis  and  additional  control  investigations  using  a
pathway-based  approach.  GSVA  can  assess  enrichment
outcomes for various signaling pathways in each specimen
to  elucidate  the  sources  of  morphological  variations,
complementing the KEGG pathway analysis and providing
more physiologically explanatory outputs [83].

To  detect  the  transcription  factors  enriched  in  every
one of the cell groups from a single-cell RNA sequencing
dataset,  a  study  [84]  developed  SCENIC  (Single-Cell
Regulatory Network Inference and Clustering) techniques.
SCENIC  extrapolates  transcription  factors  by  initially
obtaining  the  enrichment  of  TF  motifs  through  the
identification  of  putative  regulatory  regions  of  target
genes.  Subsequently,  TF  motif  enrichment  is  used  to
ascertain  the  relationship  between  candidate  TF
regulatory factors and desired target genes [85]. Though
SCENIC  can  be  implemented  in  both  R  and  Python,
pySCENIC  is  highly  recommended  for  processing  large
datasets due to its faster execution of SCENIC outputs. It
is worth noting that the latest version of SCENIC supports
analysis for Homo sapiens, Mus musculus, and Drosophila
melanogaster, with the option of manually constructing a
custom database for other species [85]. While SCENIC has
been  widely  utilized  due  to  its  outstanding  adaptability
and  robustness  across  a  broad  range  of  datasets,  it  has
been  criticized  for  overlooking  the  dynamic  changes  in
gene regulation systems across different cell types. IRIS3
is an affiliated cell-class-specific regulon reasoning server
from single-cell RNA sequencing [86]. In practical terms,
IRIS3  has  been  highly  appreciated  by  scientists  lacking
substantial  programming  expertise  due  to  its  adaptable
web server interface. However,  continuous improvement
is needed for IRIS3 in terms of reliability and efficiency.

Generally, during the improvement stage of single-cell
sequencing  technologies,  several  outstanding  problems
were  solved  to  increase  the  accuracy,  efficiency,  and
applicability of the technologies effectively. Some of these
addressed problems include enhancing cell  isolation and
capture efficiency, enabling accurate amplification of low-
input  specimens,  enabling  more  comprehensive
characterizations  into  cellular  divergence,  and  investi-
gating the huge amount of data generated from single-cell
RNA  sequencing  tools  (for  instance:  a  model  of
dimensionality  reduction,  clustering,  and  trajectory
inference was developed to extract informative biological
insights  from vast  datasets),  Spatial  Resolution (enabled
the  mapping  of  gene  expression  patterns  within  intact
tissue  sections),  and  Cost  Reduction  and  Scalability  and
Detection of Rare Cell Types and Events) [87].

4. SPATIAL SINGLE-CELL RNA SEQUENCING
Every  cell  within  a  multicellular  organism  interacts



Single-cell RNA Sequencing 9

with its neighboring environment. For instance, stem cells
diverge during development primarily through cell-to-cell
interaction and consequential signaling, regulated by the
relative  position  of  cells  within  the  embryo  [88].  The
spatial  localization  of  tissues  controls  the  expression  of
transcription  factors  linked  to  divergence,  ultimately
giving rise to a robust association of cellular organization
with their functions [89]. Location-based transcriptomics
is  the  capability  to  identify  the  positional  information  of
transcriptional  activity  within  undisturbed  tissue,  either
for sections or individual cells. It encompasses an array of
advanced tools that enable scientists to track transcripts,
often down to the sub-cellular level, providing an unbiased
map  of  RNA  molecules  in  every  part  of  tissue  sections
[90].

Single-cell RNA sequencing (scRNA-seq) has proven to
be a powerful technique for genomic investigation at the
single-cell level. However, a major drawback of this tool is
its inability to capture location-related details of the RNA
transcriptome. This limitation arises from the necessity to
detach tissues and isolate cells,  requiring the capture of
live  cells  from  entire  tissues  without  inducing  pressure,
cell death, or cell aggregation [91].

The  spatial  context  is  crucial  for  understanding
fundamental  issues related to tissue heterogeneity,  such
as  what  is  expressed  in  it,  which  cells  express  it,  and
where  exactly  it  is  expressed.  Location-based  transcript
determination  represents  a  significant  advancement  in
medical  biotechnology,  as  it  allows  the  identification  of
molecules  like  RNA  datasets  in  their  intact  physical
placement  within  tissue  segments,  providing  spatial
context  at  the  scale  of  a  single  cell.  Moreover,  this
technique  can  also  be  utilized  to  detect  the  sub-cellular
placement  of  mRNA  units  [92].  This  method  has  been
adopted and implemented for the determination of mRNA
data with great resolution and increased sensitivity [93].
Following the work of Stahl et al. on the spatial alignment
of RNA molecules, various methods have been developed,
including  in  situ  sequencing  mechanisms,  fluorescent  in
situ hybridization techniques, in situ capture approaches,
and in silico methods [94]. Even so, spatial transcripts of
RNA molecules are classified into two main types [95, 96]:
(1)  next-generation  sequencing  (NGS),  consisting  of
positional  determination  of  RNA  transcriptome  prior  to
next-generation  sequencing,  and  (2)  imaging-based
methods  together  with  in  situ  sequencing-based
mechanism, which concern amplification of RNA and their
sequencing in a tissue specimen and in situ hybridization-
based procedures. The investigation of the transcriptome
is  executed  by  utilizing  imaging  probes  that  mixture
progressively  into  the  tissue  target  [97,  98].

Elucidating  the  spatial  localization  of  the  mRNA
transcriptome  enables  investigators  to  uncover  cellular
diversity in tissues, tumors, and immune system cells, as
well  as  to  detect  the  sub-cellular  dissemination  of
transcripts  in  various  situations.  The  slogan  of  spatial
transcriptomics  is  “any  target,  any  region,  any  sample.”
The  placement  of  any  designated  cell  relative  to  its
neighbors  and  other  structures  outside  the  cell  can

provide  fundamental  details  for  explaining  cellular
characteristics, cell state, and tissue function in biological
networks. Position can also identify the ligands to which
cells  are  prone.  While  endocrine  hormones  act  at
observable  levels,  many  other  types  of  signals  act  on
neighboring  cells  through  cell-to-cell  communication  or
soluble  ligands  acting  in  the  surrounding  area.  One  can
design  substances  that  use  cell  surface-bound  sensory
receptors  and  ligand  pairs,  the  mRNA  for  which  can  be
investigated by transcriptomic mechanisms [99].

These  approaches  provide  key  insights  into  various
biomedical  sub-disciplines,  such  as  neurology,  embryo-
logy,  carcinoma studies,  immune cell  investigations,  and
histological  activities.  The functioning of  each individual
cell  in  multicellular  organisms  can  only  be  fully
understood  in  the  context  of  its  specific  position  in  the
body system. An ideal example illustrating the significance
of spatial organization is tumor tissue, where cells interact
strongly with the neighboring cancer microenvironment to
progress into suppressive conditions that inhibit immune
cell  activity,  thereby  evading  immune  cell  defense
mechanisms and accelerating proliferation to another level
[100].

To  comprehend  the  intricacy  of  biological  networks,
spanning  from  various  physiological  conditions  to  the
pathological  progression  of  infections,  it  is  crucial  to
understand  the  significance  of  each  individual  cell  and
their  interactions  to  integrate  the  complex  functions  of
tissues and organs in the body. Approaches for elucidating
these natural processes involve identifying cells present in
the  tissue  and  their  spatial  locations,  as  well  as  their
interconnections  with  one  another  [101].

5.  SINGLE-CELL  SEQUENCING  APPLICATIONS  IN
BIOMEDICAL RESEARCH

Nowadays,  single-cell  RNA  transcriptomic  investi-
gation is rapidly advancing and becoming an outstanding
technique for various scientific  inquiries across humans,
animals,  and  plants.  It  enables  highly  precise  and  rapid
determination of rare cell types and the discovery of new
cells  in  the  body.  Furthermore,  with  insights  into  gene
expression  at  the  messenger  RNA  molecule  and  protein
levels,  biotransformation,  cell-to-cell  interactions,  and
positional organization, it becomes possible to explore the
mysteries  of  cell  configuration  and  their  implications  in
health and disease conditions. While the initial discovery
and  application  of  single-cell  RNA  sequencing  were
predominantly  focused  on  animal  and,  subsequently,
human cells,  sequencing in the realm of plant science is
still  in  its  early  stages,  with  numerous  intriguing
challenges  yet  to  be  overcome  [102].

Currently, the application of single-cell transcriptomic
sequencing  mechanisms  remains  limited  to  only  a  small
number of plants due to practical constraints or extremely
limited  information  on  cell  types  and  findings  in
evolutionary biology.  Many plant research groups utilize
the most widely used model plant in molecular genomics,
Arabidopsis  thaliana  roots,  for  advanced  single-cell
transcriptomic  sequencing  and  spatial  transcriptomics
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investigations.  This  choice  is  due  to  the  relatively  small
number  of  cells,  well-identified  gene  markers,  and
straightforward  techniques  for  isolating  individual  cells
through  enzymatic  cell  wall  degradation  mechanisms
[103-105].

Analyzing cells  at  the  individual  cell  level  provides  a
unique  opportunity  to  characterize  interactions  within
inherent cellular processes and external signals, such as
regional  information  or  adjacent  cells,  in  cell  fate
investigations. Dissection at the single-cell level is also of
good  insight  into  the  clinical  diagnosis,  assisting  in
realizing  in  what  way  an  ‘outlier  cell’  may  influence  the
result  of  the  disease  process  [9],  antimicrobial  drug
adaptation [10, 11], and tumor reversion [12]. The latest
technological  breakthroughs  have  made  single-cell  RNA
sequencing  an  increasingly  influential  technique  for
elucidating  biology  and  cellular  activity,  investigating
diseases,  predicting  treatment  responses,  and  making
medication  choices  [21].

Every  tissue  and  organ  is  organized  into  highly
structured and functionally diverse groups of cells, which
vary  depending  on  different  conditions,  physiological
transformations, divergence routes, and spatial locations.
This  sophisticated  yet  well-organized  microenvironment
maintains equilibrium until extreme situations occur that
may  transform  the  normal  cell  framework  into  another,
such as tumors. To elucidate the development of tumors,
the  developmental  origin  of  cells,  tumor  proliferation,
malignancy,  and treatment responses,  it  is  significant  to
enhance our understanding of  tumor microenvironments
with key immunological and stromal components [106].

Single-cell  transcriptomic  sequencing  investigations
can analyze functional, healthy cells alongside tumor cells
at various stages of tumor growth. This enables accurate
outcomes  and  comparisons  between  differentiating  and
determining the efficacy of various medications, leading to
the development of  more efficient  therapeutic  strategies
for tumors. Initially, single-cell RNA sequencing (scRNA-
seq)  tools  were  focused  on  analyzing  every  individual
region  of  the  tissue,  its  diversity,  and  the  cell  types
involved, resulting in the generation of extensive datasets
[107].

Many challenges arise  from the fact  that  tumor cells
are variably located within tissue organization, resulting in
a heterogeneous microenvironmental organization consis-
ting  of  both  tumor  and non-tumor  cells  at  various  levels
and  conditions.  Furthermore,  the  combination  and
distribution  of  cell  specimens  can  vary  even  within
uniform sections of a tumor, especially if the samples are
obtained  at  different  points  in  time  or  under  different
conditions. Additionally, single-cell gene expression level
datasets typically contain various sources of noise, leading
to  cells  of  the  same  type  being  grouped  differently  and
cells  of  different  types  being  grouped  together  due  to
batch  effects  [108].

Despite  the  importance  of  single-cell  transcriptomic
sequencing,  RNA  expression  profiling  does  not  always
provide  insights  into  protein  levels  or  post-translational

modifications.  Currently,  single-cell  RNA  sequencing
investigations  are  complemented  by  other  methods  like
mass cytometry (cytometry by time-of-flight, CyTOF). For
example,  both  approaches  have  demonstrated  that
regulatory  T  lymphocyte  cells  in  tumors  express  higher
levels  of  tumor  necrosis  factor  receptor  superfamily
member 9 (TNFRSF9; encoding 4-1BB), as well as T cell
co-stimulator  (ICOS)  and  cytotoxic  T  lymphocyte-related
antigen 4 (CTLA4), compared to T regulatory cells in blood
or adjacent healthy tissue. This observation is indicative of
an  activated  state  [109].  Additionally,  by  incorporating
spatial  information  into  single-cell  RNA  sequencing
datasets, we are capable of examining molecular, cellular,
and  spatial  tissue  networks,  as  well  as  inter-cellular
connections  between  individual  cells  in  situ  [110-112].

Single-cell RNA sequencing is also frequently utilized
to investigate cellular transitions across various conditions
and to track cell  trajectories through processes,  such as
differentiation.  Several  analytical  platforms  have  been
proposed  to  understand  such  trajectories.  Monocle
introduced the concept of “pseudo-time” as a quantifiable
measure  of  “progress  through  a  biological  process”  and
employed methods from mathematical geometry to order
cells in pseudo-time based on their transcriptome profile.
Once cells are ordered along a trajectory, gene expression
dynamics over the course of the underlying developmental
path can be assessed to identify key regulators and genes
with “switch-like” behaviors [7].

The  intrinsic  differences  in  gene  expression  within
cells in single-cell transcriptomic sequencing data can be
utilized to infer Gene Regulatory Networks (GRNs) [113].
Typically, genes are clustered into co-regulated “modules”
based on similarities in their expression patterns [114].

5.1. Applications in Cancer Research
Single-cell  RNA  sequencing  (scRNA-seq)  has

significantly  impacted  various  fields  of  cancer  research
and  revolutionized  our  understanding  of  intra-cancer
heterogeneity, the tumor microenvironment, malignancy,
and treatment resistance. Studies have shown that genetic
or  genomic  variations  can  lead  to  cells  with  diverse
genetic  and  phenotypic  traits  within  cancerous  tissues,
resulting in highly heterogeneous cancer cells [115, 116].
This elevated level of variability may be connected to the
approaches  of  oncogenesis  [117]  and  malignancy
[118-120], so investigators are required to execute a more
precise examination of cancer cells.

Conventional sequencing mechanisms can only detect
cell  masses  and  generate  the  average  signals  within
clusters  of  cells,  potentially  masking  the  variability
present  in  cancer  cells.  Consequently,  conventional
sequencing techniques may not accurately detect cancer
cells.  Single-cell  RNA  sequencing  (scRNA-seq)  tools  can
compensate for the limitations of conventional sequencing
methods.  By  tracing  individual  cancer  cells  and  their
microenvironment,  scRNA-seq  enables  the  characteri-
zation of the variability among cancer cells. Furthermore,
scRNA-seq  can  clarify  the  cell  types  present  within
cancerous tissue and identify specific markers. It can also
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elucidate  processes,  such  as  oncogenesis  and
proliferation.  Consequently,  scRNA-seq  tools  have  been
extensively utilized in the investigation of various cancers,
playing  a  crucial  role  in  the  development  of  novel
diagnostic  and anti-cancer therapeutic  techniques [121].
For  example,  scRNA-seq  was  used  to  track  the  T  cell
immune  receptor  of  colorectal  tumors,  uncovering
subclass  grouping,  tissue  organization  traits,  cancer
variability, and drug-focused gene expression of colorectal
tumor T cells.

A possible association or transformation between T cell
classes and subclasses distributed throughout tissues was
identified. By that year, another study [122] utilized this
method  to  assess  the  characteristics  and  correlation  of
genomic  copy  number  heterogeneity,  DNA  methylation
irregularity,  and  gene  expression  alteration  during  the
onset and proliferation of human colorectal tumors at the
single-cell resolution and multi-class level.

scRNA-seq  tools  can  detect  alterations  in  gene
expression  during  cancer  proliferation.  By  coordinating
individual  cell  transcriptomic  sequencing of  neighboring
healthy  tissues  and  adenomas  at  various  stages  of
progression  in  patients,  researchers  efficiently  exposed
genomic  variation,  clonal  configuration,  and  metabolic
instability in the process of tumorigenesis. This provided
deep  insights  into  the  regulation  of  cancer  development
levels  [123].  For example,  in  the transition from familial
adenomatous  polyposis  to  adenocarcinoma,  Chen  et  al.
observed  a  moderate  epithelial-mesenchymal  status,
indicating that malignant cells retain epithelial traits while
undergoing rapid migration in breast tumors [124].

Another  example  is  a  study  conducted  on  treatment-
refractory  bladder  tumor  patients.  In  this  investigation,
single-cell  transcriptomic  sequencing  was  performed  to
elucidate  the  cancer  microenvironment,  which  includes
immune cells, the extracellular matrix, blood vessels, and
other  cell  types,  such  as  fibroblasts  [125].  Similarly,
single-cell  analysis  was  conducted  on  renal  cell
carcinomas compared to benign kidney tissues. This study
provided  insights  into  the  biology  underlying  the
progression of renal cell carcinoma and how it responds to
treatment [126].

Additionally,  single-cell  analysis  is  carried  out  to
understand molecular control points or stimulation targets
within cancers and to determine how a patient responds to
targeting  a  specific  protein  or  pathway.  For  example,
genome-wide investigations of DNA are being tracked to
detect  mutations  that  can  alter  one's  response  to
treatment  [127].  These  mechanisms  are  essential  in
situations  where  patients  do  not  respond  to  standard
therapeutics.  Such  conditions  often  occur  due  to  the
complexity  and  variability  of  infected  tissues  within
individuals.  Therefore,  there  appears  to  be  a  promising
future  for  the  application  of  single-cell  transcriptomic
sequencing  technologies  for  personalized  treatments
[128].

5.2. Implications in the Area of Immunology
Single-cell  RNA  sequencing  (scRNA-seq)  tools  can

analyze  every  single  immune  cell,  thereby  differentiating
distinct  classes  of  immune  cells  and  uncovering  novel
immune cell populations and their associations. This aids in
deciphering  the  complex  immune  network  and  suggests
new  mechanisms  for  disease  therapy.  One  study  utilized
scRNA-seq  to  determine  sub-populations  of  natural  killer
cells in the spleen and blood of both mice and humans. This
study revealed two distinct characteristics that differentiate
blood  and  spleen  natural  killer  cells  [129],  and  using  the
correlation of transcripts, the resemblance within the two
main  subclasses,  NK1  and  NK2,  in  organs  and  species  is
identified.  This  investigation  provides  a  comprehensive
understanding of the biological nature of natural killer cells
and  contributes  to  the  transition  of  animal  research  into
human-associated  studies.  Another  study  utilized  scRNA-
seq to determine several subclasses of dendritic cells and
monocytes in the human bloodstream. This study uncovered
a  novel  subdivision  of  dendritic  cells  that  exhibit
characteristics  of  plasmacytoid  dendritic  cells  but  are
effective  in  triggering  T  lymphocyte  cells  [130].

In  order  to  investigate  immune  cells  and  cytokines
during a continuous infection period, the use of single-cell
RNA  sequencing  methods  is  very  informative.  One  study
found  that  the  variability  of  IL-10-expressing  CD4  T  cells
and  the  production  of  IL-10  by  a  subset  of  helper  cells
during  different  diseases  play  a  significant  role  in
advancing  humoral  immunity  [131].

Single-cell RNA sequencing protocols can investigate
immunological  cells  with  elevated  variability  caused  by
disease  agents,  precisely  identify  the  genetic  makeup of
each  immune  cell,  and  help  elucidate  the  intricate
workings  of  the  body's  immune  system  [132].
Furthermore,  apart  from  disease-causing  agents,  age
increment  can  also  lead  to  increased  cellular  variability
among individual cells. A study conducted scRNA-seq on
CD4+ T cells in various conditions of young and aged mice
and  found  that  aging  influences  cell  transcriptomic
dynamics,  resulting  in  an  increase  in  the  variability  of
gene  expression  levels  within  immune  cells  [133].

5.3. Implications in the Gastro-intestinal System and
Urinary Tract System

Single-cell  RNA sequencing (scRNA-seq)  has  become
an influential  technique for  researchers in  various fields
due  to  its  ability  to  elucidate  the  diversity  and  complex
cell-class  organizations  of  diverse  tissues  and  cell
populations. Studies conducted by Haber et al. established
numerous new gut epithelial cell subclasses using scRNA-
seq  techniques  and  tracked  the  expression  profiles  of
gastrointestinal  epithelial  cells  [134].  From  this
transcriptomic expression profile, the nature of gut cells
maintaining  homeostasis  and  responding  to  disease-
causing microbes is described. Another investigator, Gao
et  al.,  utilized  high-accuracy  single-cell  transcriptomic
sequencing  to  examine  the  four  digestive  organs  during
human  embryonic  development  and  several  cells  of  the
adult large intestine, revealing the related gene regulatory
processes  in  the  development  of  these  four  human
digestive  organs  [135].
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5.4. Implications in the Neurology
In  the  organization  of  the  nervous  system,  there  is

dissimilarity among each single neuron because there are
specific copy number variations in brain cells [136].  The
variability  among  these  neurons  creates  a  challenge  in
investigating  how  brain  circuits  are  organized  and  in
understanding neuronal connections. However, single-cell
RNA sequencing methods can detect numerous different
stages  of  nerve  cells  and  generate  in-depth  single-cell
traces  to  elucidate  and  identify  divergent  classes  of
neurons and their associated molecules in the brain [137].
Studies [138] have differentiated sub-classes of mouse and
human  frontal  cortical  neuronal  cells  using  advanced
single-cell  methylation  sequencing  techniques.  They
discovered a novel organization of neurons in the human
frontal cortex and redefined neuron classes based on the
methylation patterns of neurons. Additionally, Lake et al.
utilized a new single-cell nuclear sequencing technique to
trace the second-generation single cells of an adult brain
[139].  It  is  effective  to  investigate  the  importance  of
principal  cell  classes  and  to  trace  normal  human  brain
cells. Another researcher [140] identified a main subset of
cerebellar  cells  and  subclasses  beneficial  to  cerebellar
development in a mouse cerebellar development trajectory
using  single-cell  sequencing.  These  investigations  will
facilitate  future  research  efforts  on  cerebellar
development,  neurobiology,  and  diseases.

5.5.  Implications  in  the  Area  of  Reproductive  and
Embryonic Medicine

Single-cell  RNA  sequencing  tools  are  capable  of
investigating the importance of a limited quantity of cells,
which  could  be  utilized  for  prenatal  identification  and
facilitated  reproduction.  By  characterizing  women's  egg
cells or embryonic cells using scRNA-seq, it is possible to
select  safe  and  healthy  embryos  for  transfer,  thereby
reducing the birth rate of infants with hereditary genetic
disorders and helping to prevent hereditary diseases [141,
142].

Embryonic growth can be viewed as the differentiation
process from the early zygote to the fully developed stage.
Investigating  the  early  stages  of  embryonic  growth
requires  techniques  that  are  compatible  with  small
numbers  of  cells.  Single-cell  transcriptomic  sequencing
studies  have  enabled  comprehensive  investigations  of
early  mammalian  development  [143],  facilitating  a  shift
from  hypothesis-driven  to  discovery-driven  science.  In
animals,  the  single-cell  RNA  sequencing  method  is
adopted to track the cell growth of zebrafish and African
cockroach  embryos,  providing  valuable  insights  into  a
deeper  understanding  of  developmental  biology  [144].
Another  study  [145]  traced  the  genome-wide  map  of
human  embryos  before  implantation  using  single-cell
multi-sequence sequencing techniques. This analysis has
applications  for  examining  the  sophisticated  and  highly
integrated  epigenetic  processes  in  the  pre-implantation
growth of human embryos. A study by Vento-Tormo et al.
[146] conducted a transcriptome analysis of placental cells
prior to gestation using single-cell RNA sequencing tools

and generated placental cell maps. Through the cell map,
three  sub-populations  of  perivascular  and  stromal  cells
existing  in  various  decidual  layers  and  decidual  natural
killer (dNK) cells were established. Additionally, the study
detected regulatory reactions that may reduce the immune
response  of  mothers  while  also  uncovering  interactions
that  contribute  to  the  favorable  outcome  of  placental
development  and  reproduction.

Another study [147] uncovered the fluctuation activity
and molecular mechanisms of gene expression during the
generation of spermatozoa in mice, particularly focusing
on  alternative  splicing  patterns  using  single-cell  RNA
sequencing  tools.  The  study  also  identified  principal
regulators  for  specific  phases  of  male  germ cell  growth.
Furthermore,  the  group  conducted  single-cell  RNA
sequencing investigations of normal human testicular cells
and unhealthy testicular cells.  Based on the outcomes, a
hierarchical  pattern  of  spermatogonial  subclasses,
spermatocyte  subtypes,  and  sperm  cell  subclasses  was
established, along with specific markers for human germ
cells.  Additionally,  alterations  in  expression  profiles  in
testicular  somatic  cells  in  non-obstructive  azoospermia
(NOA) patients  were identified,  which may contribute to
the pathogenesis of NOA [148].

6.  CHALLENGES  IN  SINGLE-CELL  RNA
SEQUENCING TECHNOLOGIES

A  comprehensive  detection  of  the  transcriptomic
landscape  of  every  isolated  cell  enables  us  to  gain  a
complete understanding of the interactions of transcripts
within  single  cells.  However,  single-cell  transcriptomic
sequencing tools still face numerous obstacles. Generally,
current  single-cell  RNA  sequencing  (scRNA-seq)
techniques have limited capture efficiency. For the reason
that  only  a  few  fragments  of  each  cell’s  transcriptome
complement  (nearly  10% for  numerous  procedures)  [27]
are illustrated in the last sequencing libraries, single-cell
RNA  sequencing  (scRNA-seq)  has  diminished  sensitivity
and is incapable of accurately determining low-abundance
transcripts  [53,  149].  The  minimal  quantity  of  input
material  for  single-cell  RNA  sequencing  libraries  also
leads  to  elevated  levels  of  technical  noise,  which
complicates  data  analysis  and  can  mask  underlying
biological  process  heterogeneity  [57,  150].

Techniques for mapping technical divergence in single-
cell  transcriptomic  sequencing  datasets  have  been
suggested [151-153]. However, the majority of techniques
utilize  the  specimen-to-specimen  heterogeneity  in  ERCC
read counts to pattern and regulate for technical noise in
the  individual  cell  dataset.  Thus,  they  could  be  utilized
solely  with  trials  integrating  spike-in  controls.
Furthermore,  these  methods  assume  that  the  spike-in
transcript is considered invariant, like cellular RNA during
library  preparation.  However,  naked  spike-in  RNA  does
not proceed across cellular lysis and is not sophisticated
with ribosomes or  RNA-binding proteins.  Thus,  although
spike-in  operations  function  as  important  indicators  of
transcriptome  occurrence  and  accuracy  in  an
investigation,  there  are  numerous  sources  of  hetero-
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geneity that remain problematic to regulate in single-cell
transcriptomic sequencing protocols.

Another  possible  source  of  influence  arises  from
protocols  for  picking  out  and  capturing  individual  cells
from  specimen  tissue.  While  techniques  like  micro-
manipulation or laser dissection mechanisms can pick out
individual cells from known positions within a cell mass or
tissue,  these  techniques  are  labor-intensive  or  require
extensive  instrumentation.  Major  single-cell  RNA
sequencing mechanisms, along with all the advanced high-
throughput  techniques  currently  available,  initially
separate  tissues  to  form  an  individual  cell  suspension,
thereby  capturing  every  single  cell.  However,  this  cell
separation  procedure  is  often  nontrivial,  and  enzymatic
treatments  used  to  disintegrate  tissues  may  affect  cell
viability, potentially influencing the transcriptional status
of cells [57]. To prevent biases from enzymatic treatments,
one  study  [154]  has  established  methods  for  executing
RNA-sequencing  straightly  on  individual  nuclei  without
the  use  of  harsh  protease  enzymatic  treatments.  Single-
cell  RNA sequencing  (scRNA-seq)  tools  have  progressed
remarkably  since  their  inception,  improving  in  terms  of
both  transcriptome  quantization  and  experimental
throughput.  However,  low  capture  efficiency  and  high
levels of technical noise reduce the accuracy and precision
of  single-cell  transcriptomic  sequencing  techniques.
Consequently, more advanced experimental configurations
are  emerging  to  facilitate  the  elucidation  of  single-cell
RNA  sequencing  datasets  [152].

As  an  alternative,  emerging  in  situ  sequencing
techniques are capable of capturing and amplifying RNA
within  the  primary  tissue  context.  However,  current
techniques can quantify only a few hundred genes per cell.
These  techniques  sequence  RNA  directly  within  intact
cells;  cDNA  amplicons  are  generated  and  circularized,
amplified using a rolling circle amplification mechanism,
and  then  sequenced  by  ligation  in  situ  using  the  SOLiD
platform [155].

Lastly,  the  majority  of  single-cell  RNA  sequencing
(scRNA-seq)  literature  has  focused  solely  on
polyadenylated  messenger  RNAs.  Nearly  all  published
single-cell  transcriptomic  sequencing  protocols  select
cellular RNA transcripts using poly-T priming techniques,
which  capture  only  polyadenylated  transcriptomes.
Consequently,  current  techniques  are  poorly  suited  to
examine  non-polyadenylated  transcriptomic  categories,
such  as  regulatory  non-coding  RNA  or  bacterial  RNA
[156]. Random hexamer priming has been proposed as a
procedure to simultaneously capture both polyadenylated
and  non-polyadenylated  transcripts  in  individual  cells.
Computationally designed “not-so-random” primers could
potentially  be  used to  target  both  poly(A)+ and poly(A)–
species  while  minimizing  the  capture  of  ribosomal  RNA
[157].

7.  FUTURE  PERSPECTIVES  AND  CONCLUDING
REMARKS

Analysis  of  single  cells  is  a  promising  and  rapidly
growing  field  that  holds  enormous  potential  to  enhance

our understanding of fundamental biological processes in
life sciences and help us better elucidate the nature and
complexity  of  human  disease  processes,  with  the  aim  of
discovering  more  effective  treatments.  The  single-cell
transcriptomic sequencing techniques have proven to be
one of the most advancing tools in life sciences over the
past  10 years.  The advancement  in  scRNA-seq tools  and
computational  devices  has  made  the  tool  accessible  and
usable  in  nearly  all  operations  within  the  life  sciences
field.  Another  valuable  application  of  scRNA-seq  is  the
creation of single-cell atlases at tissue, organism, and body
levels.  Due  to  the  advancement  in  new  techniques  and
implementations, a vast amount of scRNA-seq datasets are
predicted  to  be  generated  and  incorporated  into  openly
accessible databases,  facilitating the elucidation of  gene
and  cell  implications  in  health  and  disease  conditions
[158].

In the near future, high-resolution maps will empower
users  to  examine  existing  datasets,  bypassing  the  high
costs and time-consuming specimen reprocessing. Micro-
fluidics techniques have now catalyzed a significant shift
in  experimental  designs,  and  theoretically,  various
methods, such as combinatorial barcoding, could push the
boundaries  even  further.  Since  they  do  not  require
physical isolation of every single cell, these methods allow
for  more  cost-effective  parallel  processing  of  cells,
potentially  enabling  even  greater  scalability  in  terms  of
the number of cells analyzed [159].

Integrating  single-cell  RNA  sequencing  techniques
with other large-scale genetic testing technologies would
significantly enhance the capabilities of these instruments.
For  instance,  an  important  combinational  tool  is  inte-
grating  single-cell  RNA  sequencing  (scRNA-seq)  with
CRISPR-based  genome-wide  genetic  testing,  such  as
Perturb-seq. This approach allows for the investigation of
transcriptional  factors  by  deleting  numerous  genes  with
CRISPR.  Another  example  is  LinTIMaT,  which  combines
individual cell transcript datasets with mutation datasets
for ancestry tracing [160]. With the continual progress of
single-cell RNA sequencing and the CRISPR gene editing
process,  like prime editing [161],  more of these kinds of
integrational advancements and implications are supposed
to  be  offered  to  the  deeper  elucidating  of  gene  and  cell
purposes  in  the  body  system.  A  huge  amount  of  multi-
omics  investigations  and  analyses  are  proposed  to  be
performed  to  completely  assess  the  gene  regulatory
mechanism,  its  importance,  molecules,  and  inter-
connections  for  cell  classes  in  normal  tissues  or  organs
and disease states [162].

Following  are  some  of  the  successes  and  predicted
outcomes of applying scRNA-seq methods in combination
with  other  methods  to  solve  complex  disease  pathology
problems:  scRNA-seq  combined  with  spatial  trans-
criptomics  and  multi-omics  profiling  has  uncovered  the
heterogeneity  of  cancer  cells,  discovering  rare  cell
populations  and  understanding  their  contributions  in
tumor  progression  and  treatment  resistance.  The
integration of  scRNA-seq with  spatial  RNA mapping and
single-cell imaging technologies may help understand the
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spatial organization of cell types within brain tissues and
reveal  novel  disease-associated  cell  subpopulations,
culminating  in  the  discovery  of  possible  therapeutic
targets.  The  integration  of  scRNA-seq  with  single-cell
proteomics  and  spatial  imaging  could  give  a  profound
insight  into  immune  cell  interactions  within  tissues  and
immune  dysregulation  in  autoimmune  health  issues  or
cancer, leading to the development of immune therapies
and  vaccines.  The  integration  of  scRNA-seq  with  spatial
transcriptomics and infection models could clarify tissue-
specific  feedback  to  pathogens  and  identify  key
determinants  of  disease  severity  or  host  susceptibility,
shaping the development of antiviral drugs and vaccines
[163].

Another promising implication in the near future is the
integration  of  single-cell  RNA  sequencing  (scRNA-seq)
technology  with  routine  clinical  examination  strategies
and  personalized  treatment  mechanisms.  However,
currently,  the  majority  of  single-cell  transcriptomic
sequencing-based  clinical  trials  are  still  in  their
investigational  stages,  mainly  focusing  on  reexamining
and enhancing the understanding of disease pathogenesis
and  identifying  diagnostic  and  therapeutic  markers.
Despite the remarkable reduction in the cost per cell, the
overall cost per sample (including library construction and
sequencing  processes)  remains  prohibitively  high.  This
continues  to  be  a  significant  barrier  to  the  widespread
adoption of single-cell transcriptomic sequencing methods
as a routine diagnostic protocol.

Another  challenge  lies  in  the  operation,  analysis,
visualization,  and  interpretation  of  single-cell  RNA
sequencing  datasets.  Automated  single-cell  RNA
sequencing (scRNA-seq) data analysis pipelines with user-
friendly interfaces, and importantly, ones that can be used
by personnel without bioinformatics expertise, are needed
to  further  expand  the  clinical  applications  of  single-cell
transcriptomic sequencing.

CONCLUSION
In recent years, single-cell RNA-sequencing techniques

have  significantly  improved  due  to  the  advancement  in
novel experimental and computational tools, enabling the
characterization  of  transcript  distribution  in  millions  of
individual  cells  within  complex  multicellular  organisms.
Currently, highly accurate, automated, and cost-effective
sequencing  tools  are  continually  evolving,  promising
excellent data quality and increased output with minimal
hands-on  time.  The  vast  amount  of  information  being
generated  from  current  and  future  studies  will  have  a
profound  impact  on  various  aspects  of  life  science
research.  This  impact  ranges  from  the  development  of
personalized tumor therapies to a better understanding of
antimicrobial resistance and host-pathogen interactions. It
also includes uncovering the mechanisms controlling stem
cell differentiation, elucidating the early stages of human
embryogenesis,  and  gaining  deeper  insights  into  funda-
mental biological processes.
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