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Abstract:

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. Identification of genetic variants that pose risks to
MS is of high interest since they contribute largely to disease pathogenesis. A rich body of literature associated these risks with variants of HLA
genes located mostly on the short arm of chromosome 6 (6p21). These genetic variations may result in alteration in protein function and are
associated, therefore, with disease phenotype and therapy outcome. Although the HLA region has been routinely known to have the strongest
correlation with MS, other genes found within and outside HLA locus are considered risk factors for MS. The objective of this review is to shed
light on the non-HLA genes implicated with multiple sclerosis. Due to the interplay between the polygenetic and environmental factors, along with
their differential contribution and genetic heterogeneity among populations, it is extremely challenging to determine the contribution of the non-
HLA genes to the outcome and onset of MS disease. We conclude that a better assemblage of genetic factors involved in MS can have a critical
impact on the establishment of a genetic map of MS that allows proper investigation at the expression and functional levels.

Keywords: Multiple sclerosis, Non-HLA genes, Polymorphism, Autoimmune demyelinating disease, Genetic variants, CNS.

Article History Received: November 30, 2022 Revised: February 06, 2023 Accepted: March 01, 2023

1. INTRODUCTION

Multiple  sclerosis  (MS)  is  an  inflammatory
neurodegenerative  disorder  of  the  central  nervous  system
(CNS) resulting in a progressive loss of the myelin sheath that
typically  leads  to  sensory,  motor,  and  neurocognitive
disturbance  [1].  According  to  the  Atlas  of  MS,  this
unpredictable  disease  affects  around  2.2  million  people
globally, under different clinical forms and manifestations [2].
Different data support the evidence that adults aged between 20
and 40 years are more susceptible to the disease, with a higher
occurrence  in  females  than  males.  Although  MS  etiology  is
poorly  established,  it  is  thought  to  be  the  consequence  of
environmental  and  genetic  interactions  [3].  Among
environmental  factors,  smoking,  infections,  and  sunlight
exposure are the most widely reported [4 - 6]. Genetic factors
related to MS are numerous and are believed to contribute to
MS  onset  through  various  immunologically  relevant  genetic
risk factors [7]. On one hand, HLA genes are believed to carry
the strongest  genetic risk variant  for MS [8].  Consistently,  it
has been demonstrated that extended haplotypes spanning HLA
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class I and II are of high interest since they are implicated in
the  risk  of  several  autoimmune  diseases.  On  the  other  hand,
non-HLA genes,  including  genes  that  may  influence  distinct
immune tissues  and  cell  types,  contribute  to  the  disease  to  a
considerable  extent.  Recently,  genome-wide  associations
studies  performed  by  the  International  Multiple  Sclerosis
Genetics  Consortium  (IMSGC)  analyzed  genetic  data  from
47,429  MS  patients  and  68,374  individuals  without  MS  in
order to establish a genetic map for MS and have determined
more than 230 independent MS risk variants, consisting of 200
autosomal  variations,  one  chromosome  X  variation,  and  32
different HLA ones. Various studies on different populations
tackled the involvement of several non-HLA genes in MS with
conflicting  results.  In  this  review,  we  will  shed  light  on  the
mostly reported non-HLA genes along with their contribution
to  MS.  These  genes  were  chosen  to  be  the  major  non-HLA
contributors after a vigorous search conducted using Pubmed.
In  our  search,  we  focused  on  related  articles  dated  from
January  2005  till  January  2023.

2. NON-HLA GENES AND MS

Table 1 represents the main non-HLA genes that showed
potential correlation with MS, along with their contribution to
normal physiological conditions. These genes were the major
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non-HLA gene  contributors  obtained  after  a  vigorous  search
conducted,  using  PubMed,  from  the  published  articles  dated
from January 2005 till January 2023.

Table  1.  The  main  non-HLA  genes  show  a  potential
correlation  with  MS  along  with  their  contribution  to
normal  physiological  conditions.

Non-HLA MS
Susceptible

Gene

Role in Normal Physiological
Condition

References

CD58
Co-stimulation and proliferation of T-

cell receptor signaling via its interaction
with cluster of differentiation 2 (CD2)

[9]

CD6

Co-stimulation and proliferation of T-
cell receptor signaling via its interaction
with the ligand activated leukocyte cell

adhesion molecule (ALCAM)

[10]

CLEC16A Retrograde transport of HLA-II
containing compartments [11]

CYP27B1 Implication in converting vitamin D to
its active form [12]

FoxP3 Control T-cell activity by inducing the
activity of regulatory T (Treg) cells [13]

IL2-Rα Binding of interleukin 2 (IL2) resulting
in the activation of T cells [14]

IL7-Rα Binding of interleukin 7 (IL7) resulting
in the differentiation of T cells [15]

2.1. Cluster of Differentiation 58 (CD58)

CD58  encodes for a glycosylated cell  adhesion molecule
known as lymphocyte-associated antigen 3(LFA3) that is found
on  human  chromosome  1p13.  It  is  present  on  the  surface  of
antigen-presenting cells (APCs), especially macrophages, and
is able to promote their specific adherence to the CD2 ligand
on  the  T-cell  surface.  A  whole-genome  association  scan  has
proposed that genetic variations in CD58  are associated with
MS risk. The most studied genetic variant is rs2300747, where
inconclusive data were shown; an association was maintained
in different studies [16 - 18] and supported by the fact that MS
patients carrying the G protective allele presented higher CD58
mRNA  expression  level  during  clinical  remission  [17].
However,  this  genetic  variant  association  with  MS  was  not
consistent among other studies [19, 20]. On the other hand, a
second genetic variant rs12044852 was shown to be correlated
with MS in Australians and Russians [18, 21] but not in Malay
and Iranian [19, 22] populations where the CC genotype was
strongly  associated  with  multiple  sclerosis  severity  score
(MSSS),  indicating  by  this  a  negative  effect  of  this  SNP  in
response to interferon-beta (IFN-β) therapy [22].

2.2. Cluster of Differentiation 6 (CD6)

CD6  encodes  a  cell  surface  scavenger  implicated  in
thymocyte  differentiation  as  well  as  in  T-cell  activation  and
differentiation.  It  has  been  suggested  that  CD6  may  play  a
crucial role in MS pathogenesis as it was shown to be involved
in  the  transmigration  of  leukocytes  across  the  blood-brain
barrier (BBB). However, its definite role in regulating T-cell
responses  remains  controversial.  Genome-wide  association
studies  have  identified  a  large  number  of  genetic  variants
associated with autoimmune diseases, including MS. Previous

reports  showed  an  association  between  CD6  genetic  variant
rs17824933 and MS [23 - 25]. In addition, the risk allele of this
single nucleotide polymorphism (SNP) was demonstrated to be
associated with a decreased expression of full-length CD6 in
CD4+  and  CD8+  T  cells,  affecting  consequently  their
proliferation  [26].  Hence,  targeting  CD6 by developing anti-
human CD6 monoclonal antibody would be of high interest in
MS therapy as it prevents T cell depletion [27]. Additional risk
variants were shown to be associated with MS like rs12360861
in  Poland  population  and  rs650258  in  the  Spanish-Basque
population [28, 29] with data replication needed. Overall, these
data reinforce the important role of CD6 in MS pathogenesis.

2.3. C-type Lectin Domain Containing 16A (CLEC16A)

C-type lectins are key players in immune regulation as they
drive  different  functions  of  antigen  presenting  cells  (APCs)
[30].  Located on chromosome 16p13, a susceptible locus for
various autoimmune diseases,  this  gene is  considered among
the  first  non-HLA  genes  associated  with  MS  [21,  31  -  33].
Moreover, upregulation of CLEC16A was observed in T cells
of  MS  patients  homozygous  for  the  risk  allele  rs12927355
CLEC16A [34]. Additionally, higher expression of CLEC16A
was detected in the white matter of MS patients, especially in
the  peripheral  blood  mononuclear  cells  (PBMCs).  The  high
expression of this gene was blunted when patients were treated
with vitamin D, indicating by this that CLEC16A may play a
pivotal  role  in  MS  pathogenesis  [11].  Additional  functional
studies are required to better understand the role of CLEC16A
in MS as well as in other autoimmune diseases.

2.4. Cytochrome P450 Family 27 Superfamily B Peptide 1
(CYP27B1)

CYP27B1, located on chromosome 12q13-14, encodes for
vitamin  D  metabolizing  enzyme,  the  hydroxyvitamin  D3-1-
alpha-hydroxylase. Pre-vitamin D3 is produced in the skin and
converted  to  25(OH)D3  in  the  liver.  In  skin,  kidney  and
immune cells, CYP27B1 enzyme converts 25(OH)D3 into 1,25
(OH)2D3  that  binds  to  the  vitamin  D  receptor  present  at  the
surface  of  T-cells  and  antigen  presenting  cells  (APCs).
Consequently,  it  suppresses  the  adaptive  immune  response,
decreases dendritic cell and T-cell proliferation, differentiation,
and  maturation  as  well  as  Th1/Th2  ratio,  and  enhances  the
suppressive function of regulatory T-cells. Several studies have
highlighted  the  role  of  rs703842  in  MS  with  inconsistent
results reported. Most studies showed an association between
this risk variant and MS in Caucasian [35, 36], Slovakian [37],
and Han Chinese [12] populations but not in others [38 - 40].
This was associated with a lower level of vitamin D registered
in MS patients compared with controls, regardless of the risky
genotypic  and  allelic  status  of  this  variant  [35,  38].  One
additional  risk  variant,  rs118204009  was  suggested  to  be
implicated  in  MS  [12,  41].  Further  consideration  of  distinct
ethnicity  groups  is  needed  for  a  better  understanding  of
CYP27B1  role  in  MS.

2.5. Forkhead box P3 (FoxP3)

FoxP3 encodes a transcription factor that is predominantly
expressed in CD4(+) CD25(+) regulatory T cells, playing a key
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role in maintaining immune homeostasis. It is considered the
master  transcription  factor  of  these  cells,  responsible  for  the
polarization  of  naïve  T  cells  into  Treg  cells.  Recently,  T
regulatory (Treg) cells have been known to present an impaired
suppressive  function  in  MS  disease  [42].  Accumulating
evidence  showed  that  functional  alterations  in  FoxP3  gene
expression have been observed in several autoimmune diseases
[43,  44],  linking  thereby  the  defect  in  functional  peripheral
immunomodulation to an established genetic variant implicated
in immune regulation and autoimmunity. A positive correlation
was found  between  the genetic  variant  rs3761548  and  MS 

[44  -  48].  Additional  single  nucleotide  polymorphisms  were
also investigated with conflicting results [47, 50]. FoxP3 gene
expression level was validated to be decreased in experimental
autoimmune  encephalomyelitis  (EAE)  models  or  in  MS
patients [51 - 53], which could not be reproduced in the study
of  Akbari  et  al.  [54].  Interestingly,  FoxP3  expression  level
could  be  restored  by  (IFN-β)  treatment  [55]  or  through
injection  of  ex  vivo  autologous  Treg  cells  that  helped  in
increasing  the  level  of  Treg  in  patients’  blood.  To  sum  up,
FoxP3  could share a powerful link to MS susceptibility as it
exerts an immunomodulatory effect.

Fig. (1). This figure represents a functional analysis of the main non-HLA MS susceptible genes and their potential contribution to MS. The risk allele
rs703842 of CYP27B1 induces a reduced production of IL2. Those of CD6 (rs17824933 and rs12360861) induce a decrease in CD6 expression and
that of IL7-Rα (rs6897932) leads to the production of the soluble form of IL7-Rα. All four SNPs (rs703842, rs17824933, rs12360861, and rs6897932)
result in the alteration of T cell proliferation that could affect MS susceptibility. The risk allele rs12044852 of CD58 induces a decrease in CD58
expression that leads to FoxP3 down-regulation. FoxP3 expression may also be down-regulated due to the risk allele rs3761548 of FoxP3.  The
reduced expression of FoxP3  ends up with the dysfunction of regulatory T (Treg) cells that will increase the risk for MS susceptibility. On the
contrary, the protective allele (rs2300747) of CD58 induces an increase in CD58 expression that will lead to FoxP3 up-regulation and consequently to
Treg cell activation, reducing the risk for MS susceptibility. The numbers in brackets above each box represent the references used in linking the main
non-HLA gene SNPs studied to their gene expression level and their potential contribution to MS.

2.6. Interleukin 2- receptor Alpha (IL2-Rα)

IL2-Rα,  also known as CD25,  is  located on chromosome

10 and encodes the specific component of the high affinity IL2-
R  system  that  is  implicated  in  autoimmunity  and  immune-
regulation,  where  IL2/IL2-R  signaling  pathway  allows  the



4   The Open Biotechnology Journal, 2023, Volume 17 Borjac et al.

proliferation and survival of affected T cells and regulatory T
cells production [56, 57]. Genome wide-association studies and
fine mapping have revealed a tight link between SNPs in IL2-
Rα and increased risk of immune mediated diseases including
MS.  Different  studies  were  conducted  on  IL2-Rα  polymor-
phisms and MS, mostly studying SNP rs2104286 that showed a
risk  susceptibility  for  the  disease  according  to  several
publications [21, 58 - 61]. Additionally, one report has found
that  this  SNP  was  accompanied  by  a  reduced  frequency  of
CD25(+) follicular helper T1 (TFH1) cells in patients carrying
the risk genotype [62].  Fewer studies were performed on the
rs12722489 SNP that  also showed to be implicated with MS
[59,  63].  However,  data  replication  is  needed  on  various
populations  for  further  validation.  Furthermore,  a  study  by
Ainiding et al. showed that DNA hypo-methylation of IL2-Rα
was significantly associated with MS and was accompanied by
a higher expression of IL2-Rα in T cells of MS patients [64].
Together, these data confirm the tight correlation between IL2-
Rα and MS.

2.7. Interleukin 7- receptor Alpha (IL7-Rα)

IL7-Rα,  located  on  5p13  human  chromosome,  encodes  a
subunit  of  IL7  receptor  that  plays  a  role  in  immune
homeostasis  by  assisting  in  the  maturation  of  B  and  T  cells.
Various genome wide association studies revealed that IL7-Rα
is correlated with various immunological disorders [65], such
as  MS  [66],  and  thus  is  considered  among  the  top  listed
candidate genes implicated in MS. Evidence illustrates the tight
association between MS and SNPs in the promoter and exon
region of IL7-Rα. Genotyping of 123 SNPs in 66 genes chosen
according to their chromosomal location or biological roles has
identified that IL7-R includes at least 3 significantly associated
SNPs  with  MS  risk  [67].  Additionally,  alteration  in  the
expression  of  genes  encoding  IL7-Rα and  its  IL7  ligand  has
been shown in the cerebrospinal fluid (CSF) compartment of
MS patients [68]. Most studies tackled the association between
genetic  variant  located  in  exon  6  of  IL7-Rα  and  MS  with  a
well-established association [63, 69 - 77] or association reach-
ing significance after stratification analysis in progressive MS
subjects  only  [78,  79]  or  more  specifically  in  secondary-
progressive  MS  (SPMS)  [80].  However,  no  association  was
found  in  other  studies  [81  -  83].  It  has  been  suggested  that
rs6897932 risk variant is linked to altered alternative splicing
of exon 6 that contributes to its skipping, affecting therefore,
the  ratios  of  soluble  (sIL7-  Rα)  to  membrane-bound  IL7-Rα
[84]. However, a reduced expression of sIL7-Rα was detected
in progressive MS subjects regardless of their genotypes [78]
and  showed  no  effect  of  genotype  or  protein  isoforms
expression  on  MS  phenotype  [71].  Furthermore,  a  genetic
variant in the 5’UTR of the RNA helicase DDX39B, a potent
activator  of  exon  6  of  IL7-Rα,  was  shown  to  reduce  its
translation, resulting in increased levels of the soluble form of
IL7-Rα  [85  -  88].  A  meta-analysis  study  consisting  of  9734
cases and 10436 controls confirmed the association between 3
SNPs of IL7-Rα (rs3194051 in exon 8, rs987107 in the intronic
region, and rs11567686 in the promoter) and MS [66]. To sum
up,  IL7-Rα  locus  polymorphisms  can  have  a  key  role  in  MS
predisposition.

Fig. (1) depicts a functional analysis of the main non-HLA

MS susceptible genes and their potential contribution to MS.

CONCLUSION

Multiple sclerosis is a chronic autoimmune disorder where
genetic  variations,  especially  those  involved  with  immune
regulation, play a key role in its development. The literature on
HLA  related  genes  in  MS  is  rich,  including  genetic  and
functional  studies.  Importantly,  the  latter  showed  that  HLA
genetic  associations  with  MS  were  linked  to  functions  not
directly  associated  with  antigen  presentation.  On  the  other
hand, although non-HLA genetic variations were prominently
associated with MS, conflicting results were reported based on
the  genetic  backgrounds.  Thus,  more  studies  are  needed  to
verify  the  functional  impact  of  these  variants  in  MS
progression. In this review, we summarized the most relevant
non-HLA genetic variants associated with MS. Overall, these
variants  may  serve  as  a  starting  point  for  MS  genetic  map
construction  for  a  further  investigation  of  these  genes  at
transcriptional,  functional,  and  signaling  pathway  levels.
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