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Abstract:

Introduction:

Alzheimer’s disease (AD) is the most epidemic type of dementia. The cause and treatment of the disease remain unidentified. However, when the
impairment is still at a preliminary stage or mild cognitive impairment (MCI), the symptoms might be more controlled, and the treatment can be
more efficient. As a result, computational diagnosis of the disease based on brain medical images is crucial for early diagnosis.

Methods:

In this study, an efficient computational method was introduced to classify MRI brain scans for patients with Alzheimer’s disease (AD), mild
cognitive  impairment  (MCI),  and  normal  aging  control  (NC),  comprising  three  main  steps:  I)  feature  extraction,  II)  feature  selection  III)
classification. Although most of the current approaches utilize binary classification, the proposed model can differentiate between multiple stages
of Alzheimer’s disease and achieve superior results in early-stage AD diagnosis. 158 magnetic resonance images (MRI) were taken from the
Alzheimer’s Disease Neuroimaging Initiative database (ADNI), which were preprocessed and normalized to be suitable for extracting the volume,
cortical thickness, sulci depth, and gyrification index measures for various brain regions of interest (ROIs), as they play a considerable role in the
detection of AD. One of the embedded feature selection method was used to select the most informative features for AD diagnosis. Three models
were used to classify AD based on the selected features: an extreme gradient boosting (XGBoost), support vector machine (SVM), and K-nearest
neighborhood (KNN).

Results and Discussion:

XGBoost showed the highest accuracy of 92.31%, precision of 0.92, recall of 0.92, F1-score of 0.92, and AUC of 0.9543. Recent research has
reported using multivariable data analysis to classify dementia stages such as MCI and AD and employing machine learning to predict dementia
stages.

Conclusion:

In the proposed method, we achieved good performance for early-stage AD (MCI) detection, which is the most targeted stage to be identified.
Moreover, we investigated the most reliable features for the diagnosis of AD.
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1. INTRODUCTION

Alzheimer's  disease  (AD)  is  a  cumulative
neurodegenerative disease for which there is currently no cure.
However,  the  detection of  the  disease  at  an  earlier  stage  can
assist  in  slowing  down  the  progression  of  AD.
Neuropathological changes due to AD appear prior to the onset
of clinical symptoms. Hence, there is a need to detect brain alt-
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erations at an early stage and identify biomarkers that are most
associated with mild cognitive impairment (MCI) and AD.

Structural magnetic resonance images (MRI) biomarkers,
including  brain  regions  morphometry,  texture,  volume,  and
cortical  measurements,  have  been  used  to  classify  the  main
stages of Alzheimer’s disease: normal control (NC), MCI, and
AD. Many automatic approaches have been used for extracting
biomarkers  from  MRI  [1  -  5],  such  as  region  of  interest
analysis  (ROI)  methods.  ROI  analysis  aims  to  map  labeled
ROIs from a brain atlas (volume and surface-based atlas maps)
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to a target brain via automated high-dimensional registration to
obtain labeled ROIs from the target. Following this, regional
tissue measurements such as ROI volume, cortical thickness,
sulcal  depth,  and  gyrification  index  were  estimated.  To
accomplish this automatic feature extraction and analysis, there
are  various  software  packages  such  as  Statistical  Parametric
Mapping (SPM),  Computational  Anatomy Toolbox (CAT12)
[6], and FreeSurfer [7].

The  chief  concern  addressed  in  several  studies  for
diagnosing AD at its  early stages are building more efficient
biomarkers  from  MRI  scans  for  AD  detection.  The  use  of
various machine learning classifiers to select features related to
Alzheimer's and to develop an accurate detection system is a
current area of research. MRI scans have been studied to obtain
several Alzheimer's biomarkers and to study the most atrophic
regions using volume [8, 9], shape [10], texture [11], cortical
[12, 13], and sulcal measurements [14]. These measurements
were  performed  on  various  affected  brain  regions,  including
the  hippocampus  [15],  amygdala  [16,  17],  whole  brain  [18],
entorhinal  cortex  [19],  brainstem  [20]  and  ventricles  [21].
Although volume and cortical thickness are the most dominant
biomarkers studied, there have been very few investigations of
other surface-based features, such as the gyrification index and
sulcal depth in early AD diagnosis. Analysis of the gyrification
index and sulcal depth could provide remarkable information
about the alterations in the brain shape caused by AD. These
alterations  are  not  detected  with  conventional  volumetric
analyses  but  could  be  captured  with  cortical  gyrification
analysis [22]. The sulcal depth and sulcal width were observed
to be lower in normal controls and increasing along with the
severity level of AD [12, 14]. The gyrification index, which is
the ratio of the inner surface (GM/WM interface) area to the
outer surface area (GM/CSF interface), is an excellent feature
for  the  early  diagnosis  of  patients  with  mild  AD  and  for
separating them from normal controls [22]. Some researchers
believed combining complementary biomarkers with different
information could provide more efficient and accurate evidence
for AD, MCI, and NC diagnosis [23].

Recent advances in machine learning techniques, such as
support  vector  machine  (SVM),  K-nearest  neighbor  (KNN),
decision  tree  [24],  and  ensemble  models  [25],  enhance  the
process of disease diagnosis and increase the accuracy through
automated  systems  instead  of  focusing  entirely  on  physician
experiments.  However,  selecting  the  best  biomarkers  that
represent Alzheimer's is a major challenge that can be used to
distinguish between stages of the disease. The particle swarm
optimization (PSO) algorithm [26], XGBoost [27], RFE-SVM
[28], and t-test [29] are some of the feature selection methods
that  have  been  employed  in  recent  studies.  One  study
developed  a  method  by  combining  SVM and  particle  swarm
optimization  (PSO)  for  classifying  AD  from  NC  with  an
accuracy  of  up  to  94.12%  and  88.89%  for  classifying  MCI
from NC, using volume and shape features [30]. Another study
demonstrated  96.5%  classification  accuracy  for  AD/NC  by
investigating  the  temporal  lobe  and  whole-brain  gray  matter
[31].  Furthermore,  a  multistage classifier-based method used
88 features (50 volumes and 38 regional cortical thicknesses)
to predict AD/MCI/NC with an accuracy of up to 81.3%. On
the other hand, one report obtained 0.52 average precision and

0.56 average recall for classifying AD, MCI and NC using an
ensemble  random  forest.  Moreover,  a  surface-based
morphometry report differentiated between AD and NC with
93.3% specificity and 87.1% sensitivity [32].

Our contribution is to have the most beneficial number of
features among a large pool of AD biomarkers to differentiate
between  AD  stages  and  diagnose  the  early  stage  with  high
accuracy  using  XGBoost.  In  this  study,  MRI  scans  were
acquired  from  the  Alzheimer’s  Disease  Neuroimaging
Initiative (ADNI) and processed to extract volumetric features
for  81  brain  regions.  In  addition,  cortical  thickness,  sulcal
depth,  and  gyrification  index  features  were  obtained  for  68
brain  regions,  and  all  features  were  combined  to  get  275
attributes.  We  used  XGBoost  to  find  the  best  features  that
represent Alzheimer's disease in order to build a more precise
classification  system.  At  last,  three  different  classifiers
(XGBoost,  SVM,  and  KNN)  were  used  to  compare  the
classification  accuracies.

2. MATERIALS AND METHODS

2.1. Database

Data  required  for  this  study  were  obtained  from  the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu).  ADNI  was  propelled  as  a  public-
private corporation by six nonprofit organizations in 2003: the
National  Institute  on  Aging  (NIA),  the  National  Institute  of
Biomedical  Imaging  and  Bioengineering  (NIBIB),  the  Food
and Drug Administration  (FDA),  and  private  pharmaceutical
companies.  ADNI's  main  objective  was  to  check  whether
specific  biomarkers,  clinical  and  neuropsychological
assessment,  positron  emission  tomography  (PET),  and  serial
MRI  can  be  combined  to  evaluate  MCI  evolution  and  early
Alzheimer's.

158 T1-weighted MRI scans have been taken from ADNI,
26 female cases and 28 male cases in AD stage, 28 females and
25  males  in  NC  stage  and  in  MCI  stage,  27  females  and  24
males. The age range of the participants was 50-85 years. The
imaging parameters  were  as  follows:  magnetic  field  strength
=3T, flip angle= 9°, repetition time = 2,300 ms, echo time =
3.0  ms,  slice  thickness  =1.2  mm,  acquisition  matrix  =  240
×256, pixel spacing X=1.0 mm; pixel spacing Y=1.0 mm and
number of slices = 176. Some criteria were not considered in
the dataset, such as the Clinical Dementia Rating Scale (CDR),
Mini-Mental State Examination (MMSE), chronic diseases and
medical history of the patient. The demographic characteristics
of the subjects are presented in Table 1.

Table 1. The sample size for each class.

Class Female Male Sample Size/Each Class
AD 26 28 54
MCI 27 24 51
NC 28 25 53

Total 81 77 158

2.2. Image Analysis

Data  were  collected  from  ADNI  and  preprocessed  using
CAT12.  The  preprocessing  workflow  included  a  spatial
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adaptive  nonlocal  means  (SANLM)  denoising  filter  [33]  to
reduce noise while preserving edges, bias field inhomogeneity
correction,  and  affine  registration  to  get  further  high-quality
segmentation  outcome,  skull  stripping  with  adaptive
probability  region  growing  (APRG)  approach,  and
segmentation  to  three  tissues  (GM,  WM  and  CSF)  using
Adaptive Maximum A Posterior (AMAP) technique [34]. After
that, spatial normalization of the three tissues was performed
using  the  DARTEL  [35]  template.  Then,  the  Hammers  atlas
[36], one of the volume atlases, was used to calculate GM and
WM  volumes  for  specific  brain  regions.  Surface-based
processing  was  performed  following  the  completion  of  the
previous  processing.  The  projection-based  thickness  (PBT)
method  [37]  estimated  cortical  thickness,  and  the  central
cortical  surface was reconstructed.  The central  surface is  the
surface  between  the  inner  (WM/GM  boundary)  and  outer
(GM/CSF  boundary)  cortical  surfaces,  which  represent  the
cortex  well,  and  enable  reliable  estimation  of  cortical
parameters  (GI,  SD).  Ultimately,  71  raw  volumetric
measurements and 68 cortical thickness (CT), 68 gyrification
indexe  (GI),  and  and  measurements  68  sulcal  depth  (SD)
measurements  were  extracted.  Volume  measurements
involving the hippocampus, amygdala, temporal pole, fusiform,
insula,  putamen,  thalamus,  lateral  temporal  ventricle,  and
cuneus were normalized by the intracranial volume. Relative
volumes  provided  more  precise  volumes  by  reducing  the
influence of factors such as head size and brain size. Surface-
based features (CT, GI, and SD) include entorhinal, temporal
pole,  insula,  fusiform,  parahippocampus,  insula,  etc.  By
combining volume with surface-based features, we will collect
most of the important parameters to indicate the existence of
the disease, as they are complementary biomarkers with valid

information (Fig. 1).

2.3. Features Selection

The feature selection process uses a specific algorithm to
determine the most dominant features contributing more to the
prediction  variable  to  improve  model  accuracy  and  reduce
computational cost. There are three feature selection methods:
filter, wrapper, and embedded. In embedded methods, feature
selection can be used as a part of the training process, as the
model picks features that maximize accuracy [38]. Embedded
methods  have  an  advantage  over  wrapper  methods  because
they  eliminate  the  computation  time  required  to  reclassify
different  subsets.  Moreover,  they  outrank  filter  methods  by
considering the dependencies between features [39]. Therefore,
there is no need to take the step of inspecting the correlation
between features. Thus, we used one of the embedded feature
selection methods, XGBoost, to get the top-ranked features.

We have a high-dimensional feature vector, 68×3 surface-
based  features  (cortical  thickness,  sulcal  depth,  gyrification
index), and 71 volumetric features, and not all have important
information for diagnosing AD.

In XGBoost, we chose the gain value associated with each
feature  to  rank  them.  The  gain  parameter  for  each  feature
corresponds to the average loss reduction gained when using
this  feature  to  split  trees.  After  feature  ranking,  we  built  a
model  by  progressively  increasing  the  feature  size,  starting
with the most important features and recording the accuracy.
The accuracy stabilized from Features 16 to 21. From Feature
21, it decreased by 15% approximately. Adding more features
will  not  improve  the  performance  and  will  make  the  model
more complex. Thus, the number of features is limited to 16.

Fig. (1). The workflow of medical image structural MRI preprocessing (Region-based morphometry (RBM)).
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Fig. (2). The basic structure of XGBoost algorithm.

2.4. Classification

In the classification step, two conventional techniques have
been  used:  SVM,  KNN,  and  one  of  the  recent  technology
models, such as XGBoost. XGBoost is an enhanced version of
the  gradient  boosting  ensemble  learning  method  with  highly
precise  and  promising  results,  which  is  implemented  by
Guestrin  [40].  XGBoost  comprises  a  series  of  decision  trees
(weak  learners)  that  are  created  in  a  sequential  manner  and
consequently combine their decisions to predict the target. As
shown in Fig. (2), one tree (weak classifier) is fitted to a split
of features to begin the training. It then fits another tree based
on the training error (residual) from the previous tree, and this
process  is  repeated.  The  final  predicted  output  combines  all
results of the tree.

The prediction function is defined as:

(1)

Where yi is the predicted class of the i-th observation, xi is
the corresponding feature vector, and k is the total number of
decision trees ƒk(xi) defined as:

(2)

wqk(xi) is the structure-function of the k-th decision tree that
maps xi to the corresponding leaf node, w is the vector of leaf
weights.

XGBoost uses gradient descent to minimize the errors of
weak learners. The objective function is expressed as follows:

(3)

where   is  the  loss  function  that  measures  the
deviation between the prediction  and the true value yi, 
is  the  regularization  term.  (Tree  model  complexity  penalty
term) Ω(ƒk) is defined as:

(4)

where T is the number of leaf nodes, γ is the weight of the
leaf nodes, and λ and w are regular coefficients. The model is
being trained in  an  additive  manner.  Let   be  the  predicted
value  of  the  i-th  observation  at  the  t-th  iteration,  and  the
prediction  function  is:

(5)

And the objective function is altered to:

(6)

The regularization function is responsible for stopping the
training  of  a  model  when  the  function  determines  that  the
model  is  sufficiently  effective  based  on  the  learning  score,
thereby avoiding the risk of overfitting.

XGBoost  uses  the  second  Taylor  approximation  to
optimize  the  objective  function  quickly.

(7)

XGBoost  is  faster  than gradient  boosting because it  uses
the  power  of  parallel  processing,  which  makes  it  possible  to
train on large data in a better manner. It also deals with small
and  sparse  data  efficiently  and  uses  regularization  to  avoid
overfitting.  XGBoost  includes  a  large  variety  of  tuning
parameters  for  cross-validation,  regularization,  user-defined
objective functions, missing values, and tree parameters. It uses
the  features  of  each  MRI  image  to  train  and  evaluate  the
importance  score,  which  implies  how  significant  the  related
feature  was  in  buildingthe  boosted  decision  trees  within  the
model.  The  values  used  for  each  parameter  are  explained  in
Table 2.
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Table 2. Key parameters used for XGBoost classification.

Parameter Default Description
Learning rate (eta) 0.3 Shrink the weights on each step

N_estimators 100 Number of trees to fit in our
ensemble.

Objective multi:
softprob

Softprob is the same as softmax
objective, for multiclassification

Booster gbtree Select the model for each iteration
Nthread max The core number in the system, used

for parallel processing
Minchildweight 1 Minimum sum of weights

Max_depth 3 Maximum depth of a tree.
Gamma(γ) 0 The minimum loss reduction needed

for splitting
Subsample 1 Control the sample’s proportion

Colsample_bytree 1 Column’s fraction of random
samples

Reg_lambda(λ) 1 L2 regularization term on weights

SVM  is  a  supervised  machine  learning  model  used  for
classification  or  regression  and  has  been  broadly  used  in
various successful applications. SVM chooses the best hyper-
plane or a group of hyper-planes that maximizes the distance of
the margin between classes to classify data.  For non-linearly
separable data,  SVM utilizes a kernel  function that  maps the
input  data  (training  samples)  to  a  higher  dimensional  space,
such as Gaussian kernel [41]:

(8)

Where γ is  gamma, which controls  the influence of  each
training point has on the position of the decision boundary, |x –
y|2 can be defined as squared the Euclidean distance between
the two feature vectors.

We  used  a  polynomial  kernel,  and  the  polynomial  order
was 3 and the box constraint was 5.23.

KNN  is  a  supervised  nonparametric  machine  learning
method.  It  stores  and  arranges  all  labeled  data  in  memory
during the training process; therefore, it is memory dependent
and  does  not  require  model  fitting.  The  test  point  is  then
classified based on a similarity measure between this point and
its neighbors. Given x0 as a new point, the KNN search selects
the k-nearest points in terms of distance to x0. The number of
data points in each class is counted among these k neighbors,
and  the  data  points  are  classified  based  on  votes  from  the
neighbors  [42].  Cityblock  was  used  to  measure  the  distance
between points, and the number of neighbors was 12.

Instead  of  using  all  features  for  classification,  feature
selection  approaches  are  commonly  used  to  improve  the
accuracy  and  performance,  especially  for  high-dimensional
datasets.  XGBoost  was  used  for  feature  selection,  then
XGBoost, SVM and KNN were used to classify the brain MRI
scans  into  three  classes:  AD,  MCI,  and  NC.  The  proposed
classification approach is shown in Fig. (3).

Fig. (3). Schematic diagram of the proposed approach.

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾|𝑥 − 𝑦|2)        
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3. RESULTS

There were 158 cases in this study, 119 (41 NC, 40 MCI,
38  AD)  participants  for  training  models  and  39(12  NC,  11
MCI,  16  AD) participants  for  testing  the  performance  of  the
classifiers.  The  features  are  in  four  main  groups:  volume
features,  cortical  thickness,  sulcal  depth,  and  gyrification
index. Volume was measured in 71 regions of interest (ROI) of
the brain. Each of the other three features was measured for 68
ROI, as explained in Appendix 1.

The  XGBoost  algorithm  was  used  to  obtain  feature
importance.  Feature  importance  is  a  score  that  illustrates  the
value of each attribute in the building of boosted decision trees

within  the  model.  The  higher  the  relative  importance  of  an
attribute,  the  more  it  is  used  to  make  key  decisions  in  the
decision  trees.  Feature  importance  is  measured  explicitly  for
each feature in the dataset by calculating the average decrease
in impurity or the error function (such as the Gini impurity) for
each feature across all decision trees within the model.

Using  the  XGBoost  algorithm,  we  ranked  all  features.
Then,  starting  with  the  most  informative  feature,  we
implemented  a  method  to  gradually  increase  the  feature  size
(number of features) until the features no longer increase the
performance (16 and 17 features). The accuracy was fixed at
92.31%, as shown in Fig. (4).

Fig. (4). XGBoost performance with different features.

Fig. (5). Features importance ranking.
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We got 16 top-ranked features: from the volume features
group: rAmy, lAmy, lSupFroGy, rPosTeLo, and lCbe; from the
gyrification  index  features  group:  lparahippocampal,
lparacentral,  rinferiortemporal,  rparsopercularis,  and
rlateralorbitofrontal;  from  the  sulcal  depth  features  group:
lsuperiortemporal, lparacentral, and rtemporalpole; and cortical
thickness: lentorhinal, lfusiform, and rinsula, as illustrated in
Table 3 and Fig. (5).

Table 3. Selected features from each feature group

Group Features Description
Volume rAmy

lAmy
lSupFroGy
rPosTeLo

lCbe

Right Amygdala
Left Amygdala

Left Superior Frontal
Gyrus

Right Posterior Temporal
Lobe

Left Cerebellum
Gyrification Index lparahippocampal

lparacentral
rinferiortemporal
rparsopercularis

rlateralorbitofrontal

Left Para hippocampal
Left paracentral

Right Inferior Temporal
Right Pars opercularis

Right Lateral Orbitofrontal
Sulcal Depth lsuperiortemporal

lparacentral
rtemporalpole

Left Superior Temporal
Left paracentral

Right Temporal Pole
Cortical Thickness lentorhinal

lfusiform
rinsula

Left Entorhinal
Left Fusiform
Right Insula

Subsequently,  these  features  were  trained  using  three

classifiers:  SVM,  KNN,  and  XGBoost.  We  considered  four
commonly  used  metrics  which  are  ACC  (accuracy),  SEN
(sensitivity),  SPE  (specificity),  and  AUC  (area  under  the
curve), to evaluate the classification performance. To achieve
more  stable  results  and  maintain  the  same  distance  for  all
classifiers,  we  used  10-fold  cross-validation  to  compare  all
methods:  sensitivity  = recall =

Where TP, TN, FP, and FN are true positive, true negative,
false positive and false negative, respectively. Area Under the
Curve (AUC) is  the two-dimensional  area under the receiver
operating characteristic (ROC) curve, which is a graph between
the precision (y-axis) and recall (x-axis) at various thresholds
(0-1).

From Table 4, XGBoost gave the highest accuracy, which
was 92.31%, among the other classifiers (SVM and KNN) with
89.18%.  In  addition,  XGBoost  has  the  best  values  for  all
metrics (precision, recall, F1-score, and AUC) over the SVM
and KNN. It had the precision of 0.92, recall of 0.92, F1-score
of 0.92, and AUC of 0.9543, as shown in Table 5 and Fig. (6).

Table  4.  Accuracy  of  the  three  classifiers  (16  selected
features).

Classifiers Accuracy
XGBoost 92.31%

SVM 89.18%,
KNN 89.18%,

Fig. (6). ROC-AUC for the applied classifiers, class1: AD, class2: MCI, class3: NC

𝑇𝑃

𝑇𝑃+𝐹𝑁)
, precision = 

𝑇𝑃

𝑇𝑃+𝐹𝑃
,  accuracy = 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ,

 F1-Score = 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
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Table 5. Classification performance of applied classifiers.

Classifiers Stages Precision Recall F1 score AUCROC

XGBoost
AD 0.94 0.94 0.94 0.957
MCI 0.92 1 0.96 0.997
NC 0.9 0.82 0.86 0.909

Average 0.92 0.92 0.92 0.9543

SVM
AD 0.93 0.88 0.9 0.899
MCI 0.92 1 0.96 0.978
NC 0.82 0.82 0,82 0.818

average 0.89 0.9 0.893 0.898

KNN
AD 0.88 0.94 0.91 0.927
MCI 0.86 1 0.92 0.966
NC 1 0.73 0.84 0.825

Average 0.913 0.89 0.89 0.906

The F1-score and AUC for the MCI stage had the highest
values across all three classifiers, which means that with these
selected features, we can differentiate the MCI stage from the
others (NC and AD) in an excellent manner. Moreover, the AD
stage had a quite high F1-score and AUC.

NC was the lowest stage in the F1-score among the other
stages in all classifiers and had a quite high precision value and
which  means  that  all  classifiers,  in  their  errors,  tended  to
classify  NC as  an  AD or  MCI patient.  This  status  in  disease
diagnosis is preferable to classifying a patient as normal.

We used the original  number  of  features  for  each group,
and from Table 6, we can determine that volume features are
the best group of features for detecting AD, followed by GI and
CT groups. From the results, the SD feature group alone was

not  very  effective  in  the  diagnosis,  although it  improved  the
overall accuracy when combined with other feature groups.

Table 6. The accuracy of each original feature group.

Classifiers Volume (71) GI (68) SD (68) CT (68) Combined (275)
XGBoost 82.05% 66.67% 58.97% 66.67% 71.79%

SVM 69.23% 64.1% 46.15% 66.67% 82.05%
KNN 79.49% 66.67% 51.28% 69.23% 79.49%

In Fig. (7), we performed the training and testing process
for the three models (SVM, KNN and XGBoost) multiple times
with different numbers of features (14-23 features). Therefore,
XGBoost  has  the  highest  accuracy  with  the  least  number  of
features (16 features).

Fig. (7). Model performance with different numbers of features.
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4. DISCUSSION

Recent  research  has  reported  using  multivariable  data
analysis to classify dementia stages such as MCI and AD, as
well as employing machine learning to predict dementia stages.
Multivariate  analysis  studies  have  found  that  MCI  is
characterized by major temporal lobe atrophy, particularly in
the superior and inferior temporal gyrus and hippocampus. The
same study that classified early MCI in elderly healthy ageing
people using only two structural regions in both hemispheres,
the amygdala and hippocampus, found the best accuracy of up
to  0.9  [43].  Temporal  lobes  are  mostly  associated  with  the
encoding  of  memory  and  the  processing  of  auditory
information. The temporal lobe is also thought to play a critical
role in processing certain aspects of vision and language [44].
Posterior  medial  temporal  deterioration  is  related  to
disturbances  in  episodic  memory  in  patients  with  AD  [45].

Moreover,  there  is  a  study  that  reported  that  even  in  the
early  stages  of  dementia,  the  level  of  amygdala  atrophy  was
associated  with  the  severity  of  cognitive  impairment  (as
determined  by  the  MMSE  and  CDR-SB)  [16].  In  addition,
amygdala atrophy is associated with abnormal motor behavior
with  a  potential  association  with  agitation  and  anxiety  [46],
which  appear  in  Alzheimer’s.  As  it  Plays  a  vital  role  in  the
memorizing and processing of emotional responses [47]. The
mean  volume  of  the  amygdala  is  3.17  cm3  lower  than  AD,
which has 2.729 cm2 average volume [48].

Another study reported that the insular cortex, entorhinal,
and fusiform were included with the most significant ROIs to
predict a specific score for AD neuropathologic changes [49].
According to post-mortem AD neuropathological examination,
entorhinal  cortical  thickness  assessment  was  significantly
related to neurofibrillary tangles in a recent pre-mortem MRI
analysis [24]. Insular functions vary from basic functions, such
as interoception and gustation, to integrative functions, such as
decision-making, self-awareness, and self-consciousness [50].
Alzheimer's disease (AD) often involves visceral dysfunction
and  behavioral  dyscontrol,  which  are  not  found  in  other
disorders  that  affect  cognition.  This  may  be  associated  with
autonomic  instability  and  loss  of  self-awareness,  and
pathological  changes  within  the  insula  cortex  may  play  an
important role [51].

On the other hand, the hippocampus and entorhinal cortex
are  critical  for  memory  and  spatial  navigation  [52].  The
entorhinal cortex sends information to the hippocampus from
different areas of the cerebral cortex, collectively known as the
association cortex, while also returning processed information
by  the  hippocampus  back  out  to  the  association  cortex  [53].
These are the first brain regions to be affected in Alzheimer's
disease.  The  average  hippocampus  volume  for  66.27  ±  6.1
years  is  5.202  (±0.76)  cm3  and  is  reduced  by  25%  in
Alzheimer’s [54]. The entorhinal cortex has an average volume
of 1.93 cm3 for NC and 1.417 cm3 for AD [55].

Sulci have only been used in a few studies to distinguish
between  MCI  and  NC  subjects.  Among  them,  Park  and  his
colleagues  employed  cortical  thickness  and  sulcal  depth  to
classify AD and MCI [56, 57]. Sulcal abnormalities have been
associated  with  normal  ageing  and  cognitive  impairment  in

research  [58,  59].  There  is  a  consensus  between  most  of  the
features  reported  in  previous  studies  that  are  correlated  with
either MCI or AD, and the features that  we employed in our
model.

Our approach has the advantage of using a combination of
features (volume,  CT, GI,  and SD) rather  than depending on
one group of features. As, they complemented each other and
covered all the anatomical changes in AD. Besides, it classifies
multiple  stages  of  AD  in  one  step  and  produces  excellent
results.

There  is  currently  no  predictive  imaging  biomarker  for
Alzheimer's  disease  that  has  confirmed/substantial
neuropathologic  correlations,  especially  in  the  early  stage.
However, employing the improvement in imaging and machine
learning in the early detection of anatomical abnormalities in
the prodromal  stage,  before they become clinically manifest,
will  be  beneficial  for  preventing  disease  progression  and
designing effective treatments. By implementing XGBoost for
the selected 16 features of the four groups of MRI images, the
classification of NC, MCI, and AD can be performed with an
accuracy of 92.31%.

CONCLUSION

In  the  proposed  method,  we  achieved  good  performance
for early-stage AD (MCI) detection, which is the most targeted
stage  to  be  identified.  Moreover,  we  investigated  the  most
reliable features for the diagnosis of AD.

This approach relies on using an embedded method such as
XGBoost  to  extract  the  most  important  features  representing
AD from a large pool of features. In addition, three classifiers
(XGBoost,  SVM,  and  KNN)  were  used  to  determine  the
classifier with the highest accuracy. According to all the tested
models, XGBoost was the most precise classifier because it had
the  highest  precision,  sensitivity,  F-score,  ROC-AUC,  and
overall accuracy of 92.31%. Moreover, the following features:
rAmy,  lAmy,  lSupFroGy,  rPosTeLo,  lCbe,  from gyrification
index  features  group:  lparahippocampal,  lparacentral,
rinferiortemporal,  rparsopercularis,  rlateralorbitofrontal,  from
sulcal  depth  features  group:  lsuperiortemporal,  lparacentral,
rtemporalpole,  from  cortical  thickness  features  group:
lentorhinal, lfusiform, rinsula are the most important features to
detect MCI and AD together with NC. Furthermore, combining
the volume features with cortical thickness, sulcal depth, and
gyrification  index  of  the  brain  regions  yields  more  accurate
results than using either of them independently.

LIST OF ABBREVIATIONS

AD = Alzheimer’s disease

MCI = Mild Cognitive Impairment

NC = Normal Aging Control

ADNI = Alzheimer’s Disease Neuroimaging Initiative Database

MRI = Magnetic Resonance Images

ROIs = Regions Of Interest

KNN = K-nearest Neighborhood

SVM = Support Vector Machine
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APPENDIX

Names and indices of cortical regions in DKT40.

Regions (Left Hemisphere) Regions (Right Hemisphere)
1 L_bankssts 2 R_bankssts_right
3 L_Caudalanteriorcingulate 4 R_Caudalanteriorcingulate
5 L_Caudalmiddlefrontal 6 R_Caudalmiddlefrontal
7 L_cuneus 8 R_cuneus
9 L_entorhinal 10 R_entorhinal
11 L_fusiform, 12 R_fusiform
13 L_inferiorparietal 14 R_inferiorparietal
15 L_inferiortemporal 16 R_inferiortemporal
17 L_isthmuscingulate 18 R_isthmuscingulate
19 L_lateraloccipital 20 R_lateraloccipital
21 L_lateralorbitofrontal 22 R_lateralorbitofrontal
23 L_lingual 24 R_lingual
25 L_medialorbitofrontal 26 R_medialorbitofrontal
27 L_middletemporal 28 R_middletemporal,
29 L_parahippocampal 30 R_parahippocampal
31 L_paracentral 32 R_paracentral
33 L_parsopercularis 34 R_parsopercularis
35 L_parsorbitalis 36 R_parsorbitalis
37 L_parstriangularis 38 R_parstriangularis
39 L_pericalcarine 40 R_pericalcarine

http://www.fnih.org
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Regions (Left Hemisphere) Regions (Right Hemisphere)
41 L_postcentral 42 R_postcentral
43 L_posteriorcingulate 44 R_posteriorcingulate
45 L_precentral 46 R_precentral
47 L_precuneus 48 R_precuneus
49 L_rostralanteriorcingulate 50 R_rostralanteriorcingulate
51 L_rostralmiddlefrontal 52 R_rostralmiddlefrontal
53 L_superiorfrontal 54 R_superiorfrontal
55 L_superiorparietal 56 R_superiorparietal
57 L_superiortemporal 58 R_superiortemporal
59 L_supramarginal 60 R_supramarginal
61 L_frontalpole 62 R_frontalpole
63 L_temporalpole, 64 R_temporalpole
65 L_transversetemporal 66 R_transversetemporal
67 L_insula 68 R_insula

Name and index of the Hammer parcellated volume regions.

Regions (Left Hemisphere) Regions (Right Hemisphere)
1 L_Hip 2 R_Hip
3 L_Amy 4 R_Amy
5 L_AntMedTeLo 6 R_AntMedTeLo
7 L_AntLatTeLo 8 R_AntLatTeLo
9 L_Amb+ParHipGy 10 R_rAmb+ParHipGy
11 L_SupTemGy 12 R_SupTemGy
13 L_InfMidTemGy 14 R_InfMidTemGy
15 L_FusGy 16 R_FusGy
17 L_Cbe 18 R_Cbe
19 L_Bst 20 R_Bst
21 L_Ins 22 R_Ins
23 L_LatOcLo 24 R_LatOcLo
25 L_AntCinGy 26 R_AntCinGy
27 L_PosCinGy 28 R_PosCinGy
29 L_MidFroGy 30 R_MidFroGy
31 L_PosTeLo 32 R_PosTeLo
33 L_InfLatPaLo 34 R_InfLatPaLo
35 L_CauNuc 36 R_CauNuc
37 L_AccNuc 38 R_AccNuc
39 L_Put 40 R_Put
41 L_Tha 42 R_Tha
43 L_Pal 44 R_Pal
45 L_CC 46 R_CC
47 L_LatTemVen 48 R_LatTemVen
49 L_3thVen 50 R_3thVen
51 L_PrcGy 52 R_PrcGy
53 L_RecGy 54 R_RecGy
55 L_OrbFroGy 56 R_OrbFroGy
57 L_InfFroGy 58 R_InfFroGy
59 L_SupFroGy 60 R_SupFroGy
61 L_PoCGy 62 R_PoCGy
63 L_SupParGy 64 R_SupParGy
65 L_LinGy 66R_LinGy
67 L_Cun 68 R_Cun
69 CSF 70 GM
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Regions (Left Hemisphere) Regions (Right Hemisphere)
71 WM
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