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Abstract:

Cellulose production of aerobic bacteria with its very unique physiochemical properties attracted many researchers. The biosynthetic of Bacterial
Cellulose (BC) was produced by low-cost media recently. BC has been used as biomaterials and food ingredient these days. Moreover, the capacity
of  BC  composite  gives  the  numerous  application  opportunities  in  other  fields.  Bacterial  Cellulose  (BC)  development  is  differentiated  from
suspension planktonic culture by their Extracellular Polymeric Substances (EPS), down-regulation of growth rate and up-down the expression of
genes. The attachment of microorganisms is highly dependent on their cell membrane structures and growth medium. This is a very complicated
phenomenon that optimal conditions defined the specific architecture. This architecture is made of microbial cells and EPS. Cell growth and cell
communication mechanisms effect biofilm development and detachment. Understandings of development and architecture mechanisms and control
strategies have a great impact on the management of BC formation with beneficial microorganisms. This mini-review paper presents the overview
of outstanding findings from isolating and characterizing the diversity of bacteria to BC's future application, from food to biosensor products. The
review would help future researchers in the sustainable production of BC, applications advantages and opportunities in food industry, biomaterial
and biomedicine.
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1. INTRODUCTION

Microorganisms are usually defined with their planktonic
and  suspension  cell  growth  characterizations.  Attachment  of
microorganisms  on  the  surface  exhibited  the  specific
phenotypes.  These  phenotypic  distinctions  are  due  to  gene
expressions and growth rate.  Therefore,  biofilms showed the
unique  surface  attachment-detachment,  community  structure
and  finally  micro-ecosystems.  Bacterial  cellulose  (BC)  is  a
natural nanomaterial of exopolysaccharide biofilm from many
bacterial  genera  such  as  Acetobacter,  Sarcina  and  Agrobac-
terium and Komagataeibacter (former Gluconacetobacter) [1].
Komagataeibacter  can  produce  BC  while  cultivated  in  a
medium supplied with carbon and nitrogen [2]. The priority of
BC production by this  genus is  due to their  higher yield and
purity. However, the species and strains biofilm structure and
mechanical properties are different [3].

Chinese reported BC firstly during their ancient production
of fermented beverage kombucha tea.  They observed the co-
colony  of  acidic  acid  bacteria  and  yeast  embedded  on  the
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beverage surface [4]. Generally, the microbial biofilm and in
particular, BC production are the self-defense strategy towards
sustainable  acquiring  and  securing  nutrients  supply  in  harsh
environments [5]. Many multi-step regulated mechanisms with
the help of enzymes and catalytic complexes rigorously control
the  cell's  BC  synthesis  reactions.  Although,  1,4-β-glucan
chains  formation  and  their  assembly  to  cellulose  inside  and
outside  of  the  bacterial  cell  are  the  main  two  steps  of  BC
synthesis [5 - 7] (Fig. 1).

The  main  advantage  of  BC  is  the  purity  of  cellulose.
Impurities of lignin, hemicelluloses, and pectin in plant derived
cellulose  enforced  the  application  of  harsh  chemicals  in
purification  process  (environmental  safety);  however  BC
purification process needs low energy [8, 9]. Unique properties
of  BC include crystallinity  indexes up to  85% [10],  a  higher
degree  of  polymerization,  significant  tensile  characterization
[11  -  13],  a  specific  area  in  BC fibers,  higher  water  holding
capacity,  and  longer  drying  time  [14  -  16].  These  unique
features  are  related  to  the  high  aspect  ratio  of  fibrils,  which
made the increased surface area hold higher water capacity and
tightly bound them to hydroxyl groups. BC generally is very
flexible and easy to modify based on its many reactive groups.
High  porosity  and  surface  area  make  BC  appropriate  for
physical  and  chemical  interactions  with  many  compounds,
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including  antimicrobials  [10,  17,  18]  (Fig.  2).

Many  factors  control  and  structure  the  BC  yield  and
properties.  Bacterial  strains,  medium  composition  and
cultivation  process  mainly  determine  the  morphology,
properties and eventually range of possible application of BC.
Several BC applications were recently developed, for example,
biomedical applications of BC mostly focused on materials for
tissue  engineering,  wound  dressing,  artificial  skin,  blood
vessels,  and  carriers  for  drug  delivery  [1,  12]  (Fig.  3).

Optimization of the production line from strain selection to
final  modification  needs  much  effort  in  research.  Achieving
these  goals  attracted  many  researchers  to  explore  better  BC
producing species/ strains and low-cost media. It is noteworthy

to  mention  that  replacing  the  expensive  media  Hestrin  and
Schramm (HS) has been done by many researchers [19 - 23].
However, the BC produced purity was in less degree as those
required  for  some  applications  such  as  biomedical  and
industrial  applications.

The production of cellulosic bacteria generally includes the
two  main  steps,  bacterial  strain  and  bioprocess  production.
Static  and  stirred  cultivation,  besides  semi-continuous  or
continuous  fermentation  methods,  are  the  major  bioprocess
productions.  The  shapes  and  properties  of  final  cellulose
products are in significant dependence to the strain of bacteria,
static, agitated, batch or feed batch production processes [24].
This review paper presents an overview of outstanding findings
in BC production and applications.

Fig. (1). Bacterial cells and 1,4-β-glucan chains (microfibrils) exopolysaccharides.

Fig. (2). The main advantage of the Bacterial Cellulose (BC).
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Fig. (3). Factors control and structure the BC yield and properties, applications of BC.

2. STRAIN SELECTION

Naturally, the bacterial species of Achromobacter [25, 26],
Alcaligenes  [27],  Aerobacter  [28,  29],  Agrobacterium  [30  -
33],  Azotobacter  [6],  Gluconacetobacter  [19,  34,  35],
Pseudomonas  [36],  Rhizobium  [37,  38],  Sarcina  [39]  and
Dickeya  and  Rhodobacter  [40]  can  produce  cellulose.

However,  the  Gluconacetobacter  genus  is  the  primary
group of BC producers. This fact is due to the wide range of

carbon  and  nitrogen  sources  used  by  the  Gluconacetobacter
genus  [7,  41].  In  recent  days  with  biotechnology,  the
engineered  bacteria  with  low  consuming  nutrients  and  high
yield were produced [41, 42]. For example, Komagataeibacter
rhaeticus  was  engineered  and  fully  sequenced  with  low
nitrogen  and  high  yield.  It  is  noteworthy  to  mention  that
genetic tool kit was developed for this bacterium to engineer
the desired bacteria recently [43].

Fig. (4). Genetic mechanisms of cellulose production. Cellulose synthase (4p02.pdb).



Bacterial Cellulose from Food to Biomedical Products The Open Biotechnology Journal, 2020, Volume 14   127

3.  GENETIC  MECHANISMS  OF  CELLULOSE
PRODUCTION

Uridine  diphosphoglucose  (UDPGIc)  synthesis  and
polymerization  of  glucose  are  the  two  main  cellulose
production steps in bacteria. The polymerization is achieved by
cellulose synthase, which formed an unbranched chain of 1,4-
β-glucan.  Naturally,  carbon  compound  of  hexoses,  glycerol,
dihydroxyacetone,  pyruvate,  and  dicarboxylic  acids  entering
the  Krebs  cycle,  gluconeogenesis  or  the  pentose  phosphate
cycle,  followed  by  phosphorylation  and  isomerization  and
finally  UDPGIc  pyrophosphorylase  converts  the  compounds
into  UDPGIc,  a  precursor  for  the  cellulose  production.  The
efficiency of this production is different in different bacteria,
for example, for A. xylinum is 50% [27] (Fig. 4). Remarkable
genetic  engineering  approach  was  presented  recently.  In  this
approach,  the  most  efficient  microbial  BC  producer,
Komagataeibacter rhaeticus  iGEM, was isolated, and its full
genome was sequenced.  This bacterium was then engineered
for  functionalization  of  cellulose  production.  The
functionalization engineering results will help other researchers
apply  a  similar  method  for  producing  the  more  specific  BC
with unique pattern for biomaterial applications [43].

4. CULTURE MEDIUM

BC medium is costly, as it needs a high demand of glucose
and other nutrients [44]. Hestrin and Schramm (HS) medium
(glucose, peptone, and yeast extract) is used for BC production;
however, the uses of the wastes, foods, and fruits as a medium
have been reported recently [44 - 50]. For example, fruit juices
such  as  orange,  pineapple,  apple,  Japanese  pear,  and  grape

showed a higher yield in Acetobacter xylinum BC production
[46]. Furthermore, other fruits such as pineapple, pomegranate,
muskmelon,  watermelon,  tomato,  orange,  and  also  molasses,
starch  hydrolysate,  sugarcane  juice,  coconut  water,  coconut
milk were used as carbon sources [44]. The same properties of
BC  from  these  sources  were  reported  with  more  expensive
media  [48].  Organic  acid,  carbohydrates,  ethanol,  and  acetic
acid, have been used as additives in BC production media [51,
52] (Fig. 5).

Optimization of the media during the process is the key to
succeed in producing sustainable BC. Many factors such as pH,
oxygen  supply,  and  temperature  should  be  controlled  and
optimized during the process [7, 41]. All of these factors affect
the  yield  and  properties  of  the  final  products.  The  pH  and
temperature are highly dependent to the species and strain of
bacteria. Generally, pH could be between 4.0- 7.0. On the other
hand,  the  pH  of  the  culture  can  directly  control  the
accumulation  time  and  the  secondary  metabolite.  This  can
affect nutrition supply in the process. For example, the dried
weight of BC in Acetobacter xylinum 0416 was 60% higher in
the  control  pH  system  compared  to  the  uncontrolled.
Furthermore, this bacterium's growth rate was 30% higher in
lower  pH  conditions  [53].  Also,  aeration  and  oxygen
optimization  can  play  a  critical  role  in  BC  production.
Insufficient oxygen supply inhibits bacterial growth, and high
oxygen  supply  favor  gluconic  acid  production  [7,  51,  54].
Temperature  as  an  essential  factor  in  BC  production  should
optimize  carefully.  For  example,  optimal  Komagataeibacter
xylinus  B-12068  temperature  growth  is  preferably  28-30  °C
[52] (Fig. 6).

Fig. (5). Cellulose production by different strains of A. xylinum.



128   The Open Biotechnology Journal, 2020, Volume 14 Sraphet and Javadi

Fig. (6). Cellulose production of different species.

5. CULTIVATION METHODS

The cultivation mode of the BC can be static or agitated.
Static modes of cultivation usually take 5-20 days due to the
bacterial  strain  and  nutrients  supply.  The  production  is
generally on the area of air/ liquid interface [24]. The final BC
membrane shape depends on the material used for growing the
BC in this method. This method used for the predefined shape
of BC required. Disadvantages of this mode of action include
low  yield  and  more  time  consumption.  [55,  56].  Fed-batch
cultivation  could  help  to  overcome  these  problems  [56].
Researchers showed two to three times' higher yields with fed-
batch  culture  compared  to  batch  cultivation  [49].  Specific
bioreactors were produced to use in the static mode culture of
BC recently [57, 58]. Another mode of cultivation is agitated,
which has a more oxygen supply therefore, the yield is higher
than  the  static  mode  [59].  The  shape  of  BC  final  product
depends  on  the  agitation  speed.  The  drawback  of  the  agitate
mode  of  cultivation  is  the  production  of  cellulose-negative
mutants population. This mutant can produce BC with different
properties as a subpopulation. To overcome this problem, the
use of ethanol as a supplement nutrient is recommended [50,
58, 60, 61]. Stirred tank bioreactor can be used in the agitated
mode for BC production. Shear stress is a great drawback of
this BC production mode [62, 63]. Airlift bioreactor is another
bioreactor with better efficient results [54]. In this bioreactor
the  oxygen  supply  is  provided  from  the  bottom  of  the  tank,
therefore preparing better BC production conditions [64].

6.  SCRUTINIZING  THE  BC  FORMATION:  FROM
PLANKTONIC CELL TO BIOFILM

Many researchers  observed the biofilm in general  with a
simple  microscope  [65,  66].  However,  the  high-resolution
electron  microscope  allowed  us  to  examine  the  specific

detailed  characterizations  of  microbial  biofilms  [67].  It  is
noteworthy  to  mention  that  Ruthenium  red  (that  stains  the
polysaccharide) facilitated the 'researcher's effort to show the
matrix  (structure)  of  biofilm  based  on  the  polysaccharide.
Furthermore, the gene regulation studies and utilization of laser
scanning microscope had a significant impact on understanding
biofilm formation and characterization [67 - 69]. Traditionally
biofilm is defined as the assemblage of 'microorganism's cells
on  the  surface.  This  structure  is  irreversibly  associated  with
themselves and the surrounding matrix. Biofilm matrix has a
unique structure base on the cell and non-cellular materials of
the medium. The main feature  of  biofilm is  attachments  that
can  be  defined  as  unique  substratum  interactions,  culture
medium,  hydrodynamic  of  aqueous  environment  and  cell
surface characteristics.  These features  are  very important  for
scrutinizing the BC formation specifically and bacterial biofilm
formation  in  general.  Substratum  is  considered  as  the  solid
surfaces such as tissue, indwelling medical devices, industrial
devices  (piping),  and  natural  aquatic  systems.  The
physiochemical features of the surface play an important role
in attachment;  these features can effect on rate and extent of
biofilm formation. Rough hydrophobic nonpolar surfaces are
more  favorable  for  rapid  biofilm  formation  [70  -  74].  It  is
important  to note that  the surface of  materials  in an aqueous
environment  could  facilitate  and  increase  biofilm  formation
speed  [75,  76].  The  hydrodynamic  of  the  environment  with
flow  velocity  could  control  biofilm  formation  (the  higher
velocity  made  thinner  biofilm boundary  layer).  Furthermore,
the settle down of cell suspension in the aqueous medium can
control flow velocity [77 - 79].

The medium characteristics have a great impact on biofilm
formation.  pH,  nutrient  level,  and  temperature  can  play  a
substantial role in forming biofilm [80 - 84]. It is important to
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recall  here  that  bacterial  cell  surface  properties  such  as
hydrophobicity and flagella influence the attachment and rate
of biofilm formation. Furthermore, the production of EPS has a
great  impact  on  biofilm  development  [85  -  88].  Genes
regulations  have a  countless  effect  on biofilm formation;  for
example, in Pseudomonas aeruginosa algC gene up regulation
was observed during the bacterial attachments [89].

Moreover,  polyphosphokinase  synthesis  genes  in
Pseudomonas  aeruginosa  were  up-regulated  [90].  The  up-
regulated genes in Staphylococcus aureus genes involved in the
glycolysis pathway was reported previously [91]. The detailed
information  on  gene  regulation  of  biofilm  formation  was
reviewed  earlier  [91].

7. DOWNSTREAM PROCESSING

These parts of the production consist of separation of BC
from  media  and  purification  of  biopolymers.  The  BC  can
remove easily  from static  mode cultivation  by  separation.  In
agitated mode BC removes from the media by centrifugation or
filtration.  The  alkali  treatment  will  do  the  purification  of
cellulose with NaOH or KOH [5, 6]. The level of purification
is  depending  to  the  final  application,  for  example  we  need
more purify cellulose for biomedical applications compare to
the  food  application.  Sometimes  drying  step  adds  to  the
downstream  process.  Three  kinds  of  room,  oven,  freeze  and
supercritical drying methods were used in this step. Drying can
change BC's characteristic; therefore, it should be chosen very
carefully [92].

8. FORMS OF BACTERIAL CELLULOSE

Intact  membrane,  disassembled  BC and BC nanocrystals
are three BC forms [41, 93, 94].  An intact membrane can be
immersed  in  dispersion  with  other  materials.  This  has  the
advantage  of  simpler  disintegration  from other  materials  but
cannot  change  the  fermentation  process  [50,  93,  94].  BC
membrane  on  the  other  hand,  can  be  disassembled,  and
therefore they are easier to integrate with other materials and
even become better powder and film [95 - 97]. BC nanocrystal

has  been  produced  by  acid  hydrolysis,  which  removes  the
amorphous  of  the  cellulose  [98].

9. STRUCTURE OF BACTERIAL CELLULOSE

Cellulose  indeed  is  polysaccharide  consisting  of  carbon,
hydrogen, and oxygen. This carbohydrate polymeric structure
composes of glucose units. The role of cellulose in the bacterial
film  is  stability  towards  different  chemical  or  temperature
environments.  High  mechanical  strength,  crystallinity,  and
ultra-fine and pure fiber network are very dependent on highly
insoluble and inelastic cellulose fibrils. Pore and tunnels within
the thin layer (pellicle) of bacterial cellulose can retain water
16 times higher than plant cellulose [99].

The cellulose pellicle was formed on the upper surface of
air/  media,  which  shows  the  importance  of  oxygen  for  this
process. The pellicle of bacterial cellulose with 15 GPa (Young
modulus) [100] is considered as a very tough polymeric film.
This unique structure is related to fibrils conformation, which
is  bound  tightly  by  hydrogen  bonds.  The  supermolecular
structures  of  aligned  glucan  chains  with  inter  and  intrachain
hydrogen  bonds  formed  the  microfibrils  (Fig.  7).  These
microfibrils  randomly  assemble  the  fibrils,  which  literally
construct the bacterial cellulose pellicle. It is noteworthy that
bacterial cellulose belongs crystallographically to Cellulose I,
which means the crystalline fibrils are in parallel arrangement
[101].  Various  types  of  irregularities  of  fibrils  structures  of
cellulose  (kinks  or  twists  of  the  microfibrils  and  capillaries)
provide the structural heterogeneity with much greater surface
area compared to smooth fiber (Fig. 7).

10. MAIN APPLICATIONS OF BC

BC is recognized by the US food and drug administration
as  generally  safe  (GRAS)  food  [16].  As  a  fiber,  BC  is
considered good indigestible food and prescribed in humans as
dietetic food [102, 103]. One of the most famous BC is Nata-
de-coco,  which  is  the  BC  grown  from  coconut  water  with
carbohydrates and amino acid. This cubic BC is immersed in
sugar syrup [104].

Fig. (7). Structure of Bacterial cellulose.
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The product export reached 6.6 billion USD in 2011 [105].
This kind of BC can be considered low calorie desserts / snacks
and plays a great role as a novel foamy and crunchy product.
On the other hand, the fats in the food are always associated
with  several  health  problems  such  as  obesity,  diabetes,  high
blood  cholesterol  levels,  and  heart  diseases,  therefore,
replacing the fat with BC can help to improve the food industry
and human health [106 - 108]. BC is already used in meatballs
upto 20% or 10% [42, 55].

Meat  is  analogous  with  BC  and  the  mold  Monascus
purpureus was prepared and introduced with many advantages
such as antihypercholesterole. This Monascus-BC complex can
be  a  good  substitute  for  consumers  with  special  dietary
restrictions  [58,  109,  110].  Furthermore,  BC  was  used  as  a
thicker food product to increase the strength in gelling products
and  water  binding.  Also,  it  was  applied  as  a  stabilizer  of
Pickering  emulsions  [13,  111].  As  an  immobilizing  agent  of
probiotics and enzyme, BC also has great attention for many
researchers [112, 113]. It is noteworthy to mention that lipase,
laccase  and  lysozyme  immobilized  by  BC  were  reported  by
researchers [114 - 116].

BC applications in food packaging as  a  film and coating
were  also  reported  by  many  researchers  [117].  Impregnating
BC with other polymers could bring many advantages to the
composites.  BC-chitosan  produced  by  researchers  recently
showed  the  antimicrobial  activity  against  gram-positive  and
gram-negative bacteria beside the better elastic property [118].

In  the  biomedical  application  of  BC,  several  BC-
composites  were  developed  by  researchers.  The  wound
healing, skin and tissue regeneration, healing under infectious
environment, development of artificial organs, blood vessels,
skin substitutes, and many devices such as conducting devices,
displays,  optoelectronics,  sensors  and  biosensors  have  been
reported recently [18, 102, 119, 120].

CONCLUSION

Many  challenges  need  to  be  addressed  in  BC  research,
such as introducing low-cost medium and efficient producing
system with low capital investment. Besides many applications
of BC and BC-composites, the need to study bacterial diversity
is necessary. Furthermore, the study of 3-D printing of BC for
food  and  food  packages  with  specific  geometry  can  provide
more  information  in  this  field.  Additionally,  BC  producers'
diversity and molecular characterization can give great insight
on  low  cost  production  of  BC,  especially  for  food  and
biomedical  products.  Last  but  not  least,  engineering  the  BC
producers towards specific functionalization can answer many
industrial  and  biomedical  needs.  Tunable  control  on  BC
production  and  novel  structural  pattern  can  be  important  for
BC producer bacteria's future engineering.
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