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RESEARCH ARTICLE

Optimization  of  Process  Parameters  for  Cholesterol  Oxidase  Production  by
Streptomyces Olivaceus MTCC 6820

Abstract:
Background:
Streptomyces olivaceus MTCC 6820 is a potent microorganism for cholesterol oxidase (ChOx) production through the submerged fermentation
process. Statistical optimization of the process parameters for submerged fermentation enhances the production of enzymes.

Objective:
This work is aimed to optimize the culture conditions for the fermentative production of cholesterol oxidase by Streptomyces olivaceus MTCC
6820 using combined Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques.

Methods:
The ChOx production (U/ml) was modeled and optimized as a function of six independent variables (culture conditions) using RSM and ANN.

Results:
ChOx production  enhanced  2.2  fold,  i.e  1.9  ±  0.21  U/ml  under  unoptimized  conditions  to  4.2  ±  0.51  U/ml  after  the  optimization  of  culture
conditions. Higher coefficient of determination (R2 = 97.09 %) for RSM and lower values of MSE (0.039) and MAPE (3.46 %) for ANN proved
the adequacy of both the models. The optimized culture conditions predicted by RSM vs. ANN were pH (7.5), inoculum age (48 h), inoculum size
(11.25 % v/v), fermentation period (72 h), incubation temperature (30°C) and shaking speed (175 rpm).

Conclusion:
The modeling, optimization and prediction abilities of both RSM and ANN methodologies were compared. The values of Pearson correlation
coefficient (r) (ANN0.98 > RSM0.95), regression coefficient (R2) between experimental activity, RSM and ANN predicted ChOx activity, respectively
(ANN0.96 > RSM0.90) and Absolute Average Deviation (AAD) for (ANN3.46% < RSM9.87%) substantiated better prediction ability of ANN than RSM.
These statistical values indicated the superiority of ANN in capturing the non-linear behavior of the system.
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1. INTRODUCTION

Cholesterol oxidase (EC 1.1.3.6) is a bi-functional (Flavin
Adenine  Dinucleotide)  FAD-dependent  enzyme.  It  catalyzes
the  oxidation  of  cholesterol  (5-cholesten-3-ol)  to  an  inter-
mediate  5-cholesten-3-one,  and  its  further  isomerization  to
form 4-cholesten-3-one by the conversion of Δ5-bond to a Δ4-
bond [1, 2] with the concomitant reduction of molecular oxy-
gen to form hydrogen peroxide [3]. The  microbial  production
of ChOx has gained substantial attention in recent times mainly
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due to their useful biotechnological applications in the field of
clinical  pathology [4,  5],  pharmaceuticals [6 -  8],  agriculture
[9, 10] and food industries over past few decades. In the last
decade,  ChOx  has  been  predominantly  used  for  the  develo-
pment and fabrication of different types of biosensors /nano-
biosensors  for  monitoring  serum  cholesterol  detection  [11].
Despite their widespread potential applications, the commercial
production of ChOx is still a challenging aspect, due to its low
yield  through  fermentation  process  [12,  13].  There  are  some
underlying reasons behind this fact; firstly, the production and
availability  of  ChOx  are  confined  only  to  the  microbial
fermentation  process,  on  the  other  hand,  no  other  sources
(animal or plant) have been documented till date. Secondly, the
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production of ChOx by several microorganisms mostly exhibits
inducible expression pattern, i.e. no constitutive expression of
ChOx  gene.  Thirdly,  pathogenicity  of  producer  organism  is
also  a  problem  in  some  cases,  while  some  others  are
intracellular ChOx producers. These reasons not only limit its
production but also marks it an expensive enzyme for industrial
as well as clinical applications.

The over-production of ChOx through various approaches
has been the matter of current interest amongst the researchers
worldwide.  One  of  the  primary  strategies  applied  for  maxi-
mizing  yield  in  fermentative  production  of  enzyme  and
metabolites is the optimization of process parameters. The opti-
mized  cultural  conditions  viz.  medium  pH,  incubation  tem-
perature, inoculum size, inoculum age, fermentation period and
shaking  speed  enhance  the  microbial  production  of  enzymes
and biochemicals under submerged fermentation. The optimi-
zation  of  process  parameters  in  biological  systems  is  yet  a
cumbersome task. The optimization of culture conditions and
physicochemical parameters for the fermentative production of
various  enzymes  using  RSM  has  widely  been  performed  by
researchers  worldwide  [14  -  16].  The  application  of  model-
based  optimization  approach  (such  as  Central  Composite
Design-Response  Surface  Methodology  (CCD-RSM),
Artificial  Neural  Network  (ANN),  and  Genetic  Algorithm
(GA)) in the field of bioengineering, has been well documented
[17 - 20].

The  conventional  ‘One  Factor  at  A  Time’  (OFAT)
approach  of  process  optimization  has  certain  limitations
pertaining  to  improper  resource  utilization,  inaccuracy,  and
false-optimum prediction. The OFAT is often time-consuming
and  also  fails  to  study  the  interaction  of  different  process
variables involved, which affects the final yield [21]. The six
fermentation  parameters  in  submerged  fermentation  as
mentioned above have interactive effects on the production of
ChOx. RSM is an empirical tool provided with a combination
of  statistical  and  mathematical  methods  used  for  designing
factorial  experi-ments,  building  experimental  models  and
determining  the  relative  significance  of  each  independent
variable  [22].  The  optimum  predicted  by  RSM  follows  the
statistical  approach  where  the  quantitative  data  from
appropriate  experiments  are  used  to  solve  the  multivariate
equation. RSM overcomes the limitations of OFAT approach
with  a  significant  reduction  in  the  number  of  experimental
trials  for  the  evaluation  of  multiple  parameters  and  their
interactions,  thus  making  efficient  manag-ement  of  time  as
well as resources [15, 20]. RSM is based on the assumption of
linear  quadratic  correlation  for  optimizing  the  response.  The
complexity  of  interactions  increases  with  the  increase  in
variables  (more  than  7),  as  the  biological  systems  mostly
represent  complex  non-linear  relationships.  RSM  fails  to
explain  the  object  function  accurately  in  such  cases;
consequently,  RSM  could  not  explain  complex  interactions
[23].

In recent times, Artificial Intelligence (AI) has emerged as
an attractive tool for developing non-linear empirical models
and  optimizing  the  multifactor  time-variant  bioprocess  [23  -
27]. ANN is a biologically inspired computational tool, which
mimics  the  nervous  system  in  the  human  body,  where  the

neuron  functions  as  fundamental  processing  units.  Artificial
neurons  in  ANN  receive  the  input  signal  in  the  form  of
weights,  each weighted signal  corresponds to some biases in
the  hidden  layer,  and  as  a  result  of  non-linear  mapping,  the
final output signal is the product of weights and biases. ANN
offers  a  sophisticated  mathematical  model  which  overcomes
the  shortcomings  of  regression  models  for  noisy  data  and
successfully  accounts  for  the  optimization  and  nonlinear
modeling of complex biological processes. The learning algo-
rithm of ANN enables it to recognize and establish the cause-
effect  relationship  through  training  for  multiple  input-output
systems, and the performance evaluation is done on the unseen
set  of  data,  which  makes  it  efficient  for  even  more  complex
systems [23, 25].

In our previous paper, we optimized the assay conditions
for the estimation of ChOx by a new species of Streptomyces
i.e.  Streptomyces  olivaceus  MTCC 6820  using ANN [28].  In
the present  paper,  we generated a  Central  Composite  Design
(CCD)  based  experimental  design.  RSM  coupled  with  ANN
was employed to optimize the culture conditions viz. medium
pH,  incubation  temperature,  inoculum  size,  inoculum  age,
fermentation  period  and  shaking  speed  for  augmenting  the
ChOx production by S. olivaceus MTCC 6820. A comparative
performance  evaluation  of  RSM  and  ANN  techniques  was
done. To the best of our knowledge, the ChOx production by
this  microbe;  Streptomyces  olivaceus  MTCC  6820  has  been
reported for the first time.

2. MATERIALS AND METHODS

2.1. Chemicals Used

All the chemicals used were of analytical  grade.  Choles-
terol  was  purchased  from  the  Sigma  Aldrich  Pvt.  Ltd  and
Horseradish  peroxidase  was  purchased  from  Sisco  Research
Laboratories, Mumbai, India.

2.2. Microorganisms and Culture Conditions

Streptomyces  olivaceus  MTCC  6820,  used  in  this  study
was procured from Microbial Type Culture Collection, Institute
of  Microbial  Technology,  Chandigarh,  India  and  was  main-
tained  in  the  Streptomyces  growth  medium containing  (g/L):
glucose – 4, yeast extract – 4, malt extract – 1, CaCO3 – 2 and
Agar  –  12  and  the  pH  was  adjusted  to  7.2  with  KOH.  The
aseptically inoculated slants were incubated at 30 ± 2ºC for 48
-  72  h  for  the  growth  of  the  organism;  the  cultures  were
preserved  at  4ºC  in  the  refrigerator  and  were  routinely  sub-
cultured in every 30 days interval.

2.3. Fermentation Studies

The  inoculum  was  prepared  by  scraping  the  spores  of
Streptomyces from the slants into 3ml of sterile distilled water,
and the spore suspension was homogenized before transferring
into 50 ml sterile seed medium in a 250 ml Erlenmeyer flask.
The  flask  was  incubated  at  30  ±  2ºC  for  48  h  in  an  orbital
shaker (Orbitek, Scigenics Biotech Pvt. Ltd., Chennai, India) at
150  rpm.  The  production  medium  of  cholesterol  oxidase
contained (g/L): cholesterol- 2, glucose – 12, starch – 9, yeast
extract  -  6,  peptone  –  4,  (NH4)2SO4  –  7.5,  cholesterol  -  2,
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K2HPO4 – 1, MgSO4 – 0.5, NaCl – 1, MnSO4 – 0.008, CuSO4 –
0.002,  ZnSO4  –  0.002,  FeSO4  –  0.02,  CaCl2  –  0.0002  and
Tween 80 – 10 ml [12]. Cholesterol was homogenized into the
medium by ultra-sonication (Hielscher Ultrasound Technology,
UP200S,  Germany)  for  15  min  to  avoid  the  deposition  of
undissolved  cholesterol  into  the  medium  and  the  pH  was
adjusted to 7.5 before sterilization. The composition of the seed
medium  and  the  production  medium  remained  the  same.
Fermentation  was  carried  out  in  250  ml  Erlenmeyer  flasks
containing  50  ml  of  production  medium.  The  production
medium was inoculated with  10% (v/v)  of  inoculum of  48 h
old Streptomyces culture. The inoculated flasks were incubated
at 30 ± 2ºC for 120 h at 180 rpm in an orbital shaker. Samples
were collected at every 12 h intervals and centrifuged at 12,000
rpm at 4ºC in an ultracentrifuge for 20 min.  The supernatant
was  collected  as  a  source  of  crude  extract  of  extracellular
ChOx.

2.4. Enzyme Assay and Protein Estimation

ChOx activity  was  estimated  by  the  modified  method  of
Allain  et  al.  [1,  4].  In  this  biochemical  reaction,  hydrogen
peroxide (H2O2) is liberated by the ChOx-mediated oxidation
of cholesterol in the presence of molecular oxygen. This H2O2

is coupled with 4-aminoantipyrine and phenol by peroxidase to
produce Quinoneimine dye with the absorption maxima at 500
nm. The ChOx assay parameters for S. olivaceus MTCC 6820
were optimized using Response Surface Methodology (in our
previous work) and the optimal values so obtained were used
for the assay of ChOx in further experiments.

50 µL of 0.6 % cholesterol (dissolved in dimethyl forma-
mide containing 5 %(v/v) Triton X-100) was added to 1 ml of
reaction mixture containing 1.5 mM 4-aminoantipyrine, 5 mM
phenol, 10 U/ml horseradish peroxidase and sodium phosphate
buffer (20 mM, pH 8.0) and pre-incubated for 5 min at 30ºC.
100  µL  of  crude  enzyme  extract  was  added  to  the  pre-
incubated  reaction  mixture  to  start  the  reaction,  and  the
incubation  continued  for  10  min  at  30ºC.  The  reaction  was
terminated by placing the samples in a boiling water bath for 2
min and then immediately placed in an ice bath for 2 min for
(pink) color development. The absorbance was recorded at 500
nm by the discontinuous spectrophotometric method (UV 1800
Spectro-photometer, Shimadzu, Japan). Blank was prepared by
adding an inactivated enzyme sample to the reaction mixture.
No  color  was  produced  in  the  control  containing  inactivated
ChOx. One unit of ChOx activity was defined as the formation

of  1  µmol  of  hydrogen  peroxide  (0.5  µmol  of  quinoneimine
dye) per minute at 30ºC, pH 8.0.

Protein  concentration  was  determined  by  Bradford’s
method  using  Coomassie  Brilliant  Blue  G-250  dye.  The
standard curve of Bovine Serum Albumin (BSA) with concen-
trations ranging from 0.01 to 0.2 mg/ml was prepared taking
absorbance at 595 nm [29].

2.5. Experimental Design

A five-level-six factor CCD was employed using Minitab
statistical  software  package,  version  17.0  to  generate  the
experimental  design  matrix  consisting  of  53  experimental
trials.  Six  fermentation  parameters  viz.  pH  of  media  (X1),
inoculum  age  (X2),  inoculum  size  (X3),  fermentation  period
(X4), incubation temperature (X5) and shaking speed (X6) were
chosen as the independent variables, their coded and uncoded
levels are displayed in Table 1. The design matrix comprised of
nine  replications  at  center  points  in  order  to  evaluate  the
curvature and to simplify the pure error estimation, so that the
significant  lack  of  fit  of  the  models  could  be  predicted  [30].
The  experimental  runs  were  randomized  to  minimize  the
effects of unexpected variability in the observed responses. The
response surface is a multivariable polynomial model intended
to  determine  optimum  set  points  for  the  above  mentioned
independent  variables  to  optimize  the  dependent  variable  or
response (Y) viz. ChOx concentration (U/ml) in this study. The
ChOx  activity  for  each  experimental  run  was  estimated  in
duplicate, and their average values were presented in Table 2.
The  experimental  data  were  further  analyzed  using  multiple
regression  and  a  second-order  polynomial  model  fitted  for
predicting  optimal  levels  was  expressed  in  Eq.  (1):

(1)

where,  Y  is  the  predicted  response,  β  is  the  intercept
coefficient,  βi  is  the  linear  coefficient,  βii  is  the  quadratic
coefficient, and βij is the interaction coefficient. The effect of
the  variables  on  the  response  and  their  interaction  has  been
analyzed by conducting tests of significance and Analysis of
Variance (ANOVA) to check the adequacy of the model. The
optimized  variables  were  chosen  by  using  the  response
optimizer  function  of  Minitab  17.0  software.  The  interactive
effects of significant variables were represented in the form of
contour plots as shown in Fig. (1a-h).

Table 1. Independent variables chosen for the CCD.

Factor Codes Independent Variables Unit Coded Factor Levels
-α -1 0 +1 +α

X1 pH of media - 3.9324 6 7.5 9 11.0676
X2 Inoculum age hours 5.1885 30 48 66 90.8115
X3 Inoculum size % (v/v) 2.3309 7.5 11.25 15 20.1691
X4 Fermentation period hours -13.623 36 72 108 157.623
X5 Incubation Temperature °C 6.2159 20 30 40 53.7841
X6 Shaking speed rev/min (rpm) -3.381 100 175 250 353.381

Y = β0 + Ʃ βiXi + Ʃ βiiXi
2 + Ʃ βijXiXj  
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Table 2. Central composite design for six independent variables and one response (ChOx concentration) with RSM and ANN
predicted activity for ChOx (U/ml).

Run
Order

pH of
Media

Inoculum
Age

Inoculum
Size

Fermentation
Period

Temperature Shaking
Speed

ChOx Activity (U/ml)
Experimental

Observed
RSM

Predicted
ANN

Predicted
1 7.5 48 11.25 -13.623 30 175 1.500 1.7608 1.50
2 7.5 48 11.25 72 30 175 3.890 4.0511 4.0617
3 7.5 48 11.25 72 30 175 4.040 4.0511 4.0617
4 9 66 7.5 108 20 250 3.040 2.8916 2.9653
5 6 66 15 36 20 100 2.800 2.6103 2.8000
6 9 30 15 36 20 100 2.770 2.6230 2.7701
7 6 30 15 108 40 250 1.540 1.5855 1.5399
8 9 30 15 108 40 100 2.150 2.1821 2.1500
9 7.5 48 11.25 72 30 175 4.150 4.0511 4.2117
10 6 66 15 108 20 250 1.700 1.9578 1.6999
11 7.5 48 11.25 72 53.7841 175 1.400 1.2402 1.4000
12 9 30 7.5 36 20 250 2.990 3.0401 2.9898
13 9 66 7.5 36 20 100 1.940 1.8341 1.4381
14 7.5 48 11.25 72 30 175 4.110 4.0511 4.0617
15 6 30 15 108 20 100 3.850 3.9209 3.8498
16 6 30 7.5 108 40 100 2.880 3.0573 2.8800
17 9 30 7.5 36 40 100 2.530 2.3934 2.5299
18 3.9324 48 11.25 72 30 175 1.750 1.6293 2.0265
19 9 66 7.5 36 40 250 2.910 2.7063 2.9099
20 6 30 15 36 40 100 2.240 2.3921 2.2400
21 6 30 7.5 108 20 250 3.500 3.4707 3.4999
22 7.5 90.8115 11.25 72 30 175 1.730 2.2532 1.2827
23 7.5 48 11.25 72 30 353.381 2.992 3.1280 3.0113
24 9 30 7.5 108 20 100 3.810 3.8522 3.2103
25 7.5 48 11.25 72 30 175 4.122 4.0511 4.0617
26 9 30 7.5 108 40 250 3.650 3.2969 2.9887
27 6 66 15 108 40 100 2.510 2.3804 2.5099
28 9 66 15 108 40 250 2.490 1.9286 2.4899
29 7.5 5.1885 11.25 72 30 175 3.670 3.4789 3.6699
30 7.5 48 11.25 72 30 175 4.116 4.0511 4.0617
31 6 66 7.5 36 40 100 2.500 2.6671 2.4999
32 6 30 7.5 36 40 250 2.150 1.6253 2.1499
33 6 66 7.5 36 20 250 1.790 1.6530 1.7899
34 6 66 7.5 108 40 250 1.942 2.1207 1.6703
35 7.5 48 11.25 72 6.2159 175 1.770 2.2435 1.7699
36 7.5 48 11.25 157.623 30 175 2.950 2.7959 2.950
37 9 66 15 108 20 100 1.850 1.9673 1.8501
38 9 66 15 36 20 250 2.130 1.9094 1.6292
39 11.067 48 11.25 72 30 175 0.740 1.8174 0.7400
40 7.5 48 20.1691 72 30 175 3.050 3.0884 2.6465
41 9 66 15 36 40 100 2.840 2.0986 2.8401
42 6 66 7.5 108 20 100 2.970 2.7009 2.9699
43 7.5 48 2.3309 72 30 175 3.440 4.0123 3.4400
44 7.5 48 11.25 72 30 -3.381 3.894 3.8647 3.8940
45 6 66 15 36 40 250 1.760 1.7025 1.7599
46 7.5 48 11.25 72 30 175 4.083 4.0511 4.0617
47 9 30 15 108 20 250 3.620 3.4204 3.6197
48 7.5 48 11.25 72 30 175 3.989 4.0511 4.0617
49 7.5 48 11.25 72 30 175 4.092 4.0511 4.0617
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Run
Order

pH of
Media

Inoculum
Age

Inoculum
Size

Fermentation
Period

Temperature Shaking
Speed

ChOx Activity (U/ml)
Experimental

Observed
RSM

Predicted
ANN

Predicted
50 6 30 15 36 20 250 2.890 2.8138 2.8898
51 9 30 15 36 40 250 1.640 1.7400 1.6399
52 6 30 7.5 36 20 100 2.875 3.0498 2.8748
53 9 66 7.5 108 40 100 3.210 3.0892 3.6338

(Table 2) contd.....

Fig. 1 cont.....
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Fig. (1). Contour plots showing interactive effect of selected independent variables on ChOx activity (a) pH and inoculum size (b) pH and incubation
temperature (c) pH and shaking speed (d) inoculum age and fermentation period (e) inoculum age and incubation temperature (f) inoculum size and
fermentation period (g) inoculum size and incubation temperature (h) fermentation period and incubation temperature.

2.6. ANN Modeling

A  Multi-Layer  Perceptron  (MLP)  Feed  Forward  Back
Propagation type Neural Network (FFBP-NN) was employed
using  MATLAB  2012b  (Math  Works  Inc.,  USA).  The  six
determinants of ChOx production (X1, X2, X3, X4, X5, and X6;
Table  1)  served  as  network  inputs.  The  output  (ChOx
concentration U/ml) was predicted by training the FFBP-NN
with Levenberg-Marquardt training algorithm using MATLAB
trainlm  function.  The  selection  of  optimal  neural  network
architecture  and  topology  augments  the  predictability  of  the
output. The MLP architecture of ANN essentially comprises an
input, a hidden and an output layer. Different architectures of
FFBP-NN  were  designed  and  trained  using  neural  network
tool-box of MATLAB 2012b (Math Works Inc., USA) and the
network  topology  of  6-25-1  was  found  to  be  optimum,
illustrated  in  Fig.  (2).  The  ‘Tansig’  and  ‘Purelin’  transfer
functions were used in layer 1 and 2, respectively as input and
hidden  layers  with  biases  at  each  layer.  The  neural  network
was  trained  and  simulated  on  experimental  values  of  ChOx
concentration as the target, the same used for RSM, (Table 2)
and  the  entire  experimental  data  (53  runs)  from  CCD  were

divided into 70 %, 15 % and 15 % for training, validation, and
testing respectively. The splitting of experimental data enables
to measure the performance of the neural network to predict the
unseen  data  (not  used  for  training)  and  to  assess  the  gene-
ralization  capability  of  ANN.  Training  was  done  until  the
network Mean Square Error (MSE) reached the lowest value
and correlation coefficient (R) close to 1. The trained network
models  were  validated  using  the  validation  data  set  (experi-
mental data excluding the training data) for precision.

The performance of the network was evaluated in terms of
mean squared error (MSE); the minimum MSE value imitates
the optimum number of neurons in the hidden layer. Each input
data (Xi) passed through the input layer to the hidden layer hold
some weights. The inter-connection between neurons in MLP
network is defined by synaptic weight (Wij), which corresponds
to the extent of influence one neuron has on another, while the
onset for the activation of these neurons is introduced in terms
of bias (θj). The summation of the weighted outputs (XiWij) is
added to the bias term (θj) and regulates the neuron input (Ij) in
the outer layer, given in Eq. (2):

(2)

Fig. (2). Architecture of feed forward back propagation neural network. Network architecture of 6-25-1 representing the input, hidden and output
layer was found to be optimum for the prediction of desired response.

   
h 

Ij = ΣXiWij + θj
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This input neuron has to further pass through an activation
function f(Ij ) and transformed to output neuron by using sig-
moid transform function, described in Eq. (3):

(3)

2.7. Evaluation of Model Predictability
The adequacy of the developed ANN model was assessed

by  using  Mean  Squared  Error  (MSE)  and  Mean  Absolute
Percentage  Error  (MAPE),  given  in  Eq.s  (4)  and  (5):

(4)

(5)

where, n is the number of data points/experiments, θi, p is
predicted  value  obtained  from  ANN  model,  θi,  e  is  ex-
perimental  value,  ydi  is  the  actual  response  and  yi  is  the
predicted  response.  The  efficiency  of  the  ANN  model  was
evaluated  based  on  the  MSE,  MAPE,  and  regression  values
obtained. The network performance was evaluated by Perfor-
mance plot.

2.8. Performance Evaluation of RSM and ANN Models
The capability of prediction efficiency of RSM and ANN

were examined by comparing the predicted responses with the
experimental  values.  The  performance  of  the  predicted
response of ChOx concentration obtained from RSM and ANN
were assessed in terms of coefficient of determination (R2), the
Pearson’s correlation coefficient (r) and the Average Absolute
Deviation (AAD).  The R2  and AAD were calculated by Eqs.
(6) and (7) respectively:

(6)

(7)

Where, n is the number of experimental data, yi,cal is the
calculated values,  yi,  exp  is  the experimental  values,  yi,  avg,
exp is the average experimental values. R2 is a measure of the
reduction in the amount of variability of the response by using
the  repressor  variables  in  the  model  while  AAD  is  a  direct
method to measure the dispersion or variability in the data [31].
AAD explains the deviation of predicted data from observed
data.  The value of  R2  must  be close to  unity  while  the AAD
between predicted and experimental data must be as small as
possible  [32].  Pearson’s  correlation  coefficient  (r)  is  a
statistical  measure  of  the  linear  correlation  between  two
variables  and  its  value  lies  between  +1  and  -1.

3. RESULTS AND DISCUSSION

3.1.  Response  Surface  Regression  Model  for  ChOx
Production by RSM

RSM was performed to define the interactive effects of the
culture conditions on ChOx activity as well as to maximize its
production. The experimental values of ChOx were fitted to the
quadratic  equation  (Eq.  1),  and  the  following  second-order
polynomial  regression  equation  (Eq.  8)  in  coded  units  was
obtained:

(8)

Where, Y is the response (ChOx concentration, U/ml), X1,
X2, X3, X4, X5, and X6 are the coded values of the independent
variables  viz.  pH  of  media,  inoculum  age,  inoculum  size,
fermentation period, incubation temperature and shaking speed
respectively. Four interaction terms X1X2, X2X3, X2X6 and X4X6

were  not  found  to  support  model  hierarchy  and  highly
insignificant (P > 0.1), therefore these terms were eliminated
from the RSM model for better curve fitting.

The significance of the regression coefficient was tested by
t-test. The P-values explain the significance of the interaction
effects, which indicate the patterns of the interactions among

the  variables  [32,  33].  The  significance  of  each  individual
factor and their  interaction effects on ChOx production were
described  by  their  corresponding  P-values,  (Table  3).  The
individual terms in the model as X2,  X3,  X4,  X5,  and X6  were
significant terms, the quadratic terms as X1

2,X2
2, X3

2, X4
2, X5

2,
X6

2 and the terms X1X3, X1X5, X1X6, X2X4, X2X5, X3X4, X3X5,
X4X5were found to be the significant interaction terms with P-
values  <  0.05  (95  %  confidence  level,  a  =  0.05)  .  The
individual term X1 was found to be insignificant (P > 0.05), but
the corresponding interactions terms X1X3, X1X5, X1X6 showed
significant interaction. The interaction terms X1X4, X3X6, and
X5X6 were found to be insignificant with P-values > 0.05.

f(Ij) =  1/ 1 + e-Ij                                                                     

 MSE = 
1

𝑛
∑ (𝜃𝑖, 𝑝 − 𝜃𝑖, 𝑒)2𝑛

𝑖=1                                                                                   

 MAPE = 
100

𝑛
∑ |𝑦𝑑𝑖 − 𝑦𝑖/𝑦𝑑𝑖|𝑛

𝑖=1                                                                              

R2 = 1 − ∑ (
(𝑦𝑖,𝑐𝑎𝑙 −𝑦𝑖,𝑒𝑥𝑝)2

𝑦𝑖𝑎𝑣𝑔,𝑒𝑥𝑝−𝑦𝑖,𝑒𝑥𝑝2)𝑛
𝑖=1       

                                                               

AAD % = ∑ |

𝒚𝒊,𝒆𝒙𝒑 − 𝒚,𝒄𝒂𝒍

𝒚,𝒆𝒙𝒑

𝒏
| × 100                                                                   

Y =  -11.55 + 2.494 X1 + 0.0123 X2 + 0.4544 X3 + 0.05829 X4 + 0.1743 X5 - 0.00561 X6 

                            - 0.1837 X1
2 - 0.000652 X2

2 - 0.00643 X3
2 - 0.000243 X4

2 - 0.004101 X5
2 - 0.000018 X6

2      
 

- 0.02363 X1*X3 + 0.000928 X1*X4 + 0.00530 X1*X5 + 0.001873 X1*X6 

                           - 0.000157 X2*X4 + 0.001578 X2*X5 - 0.000939 X3*X4 - 0.003064 X3*X5 

                           - 0.000142 X3*X6 - 0.000203 X4*X5 - 0.000090 X5*X6                               
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Table 3. Regression analysis of CCD showing model coefficients and significance of regression coefficient for ChOx activity.

Term Coef SE Coef T-Value P-Value
Constant 4.0617 0.0677 60.01 0.000

X1 0.0395 0.0309 1.28 0.211
X2 -0.2577 0.0309 -8.34 0.000
X3 -0.1942 0.0309 -6.28 0.000
X4 0.2176 0.0309 7.04 0.000
X5 -0.2109 0.0309 -6.82 0.000
X6 -0.1549 0.0309 -5.01 0.000

X1
2 -0.4134 0.0264 -15.66 0.000

X2
2 -0.2114 0.0264 -8.01 0.000

X3
2 -0.0904 0.0264 -3.42 0.002

X4
2 -0.3152 0.0264 -11.94 0.000

X5
2 -0.4101 0.0264 -15.54 0.000

X6
2 -0.0999 0.0264 -3.79 0.001

X1*X3 -0.1329 0.0360 -3.70 0.001
X1*X4 0.0501 0.0360 1.39 0.174
X1*X5 0.0795 0.0360 2.21 0.035
X1*X6 0.2107 0.0360 5.86 0.000
X2*X4 -0.1017 0.0360 -2.83 0.008
X2*X5 0.2840 0.0360 7.90 0.000
X3*X4 -0.1268 0.0360 -3.53 0.001
X3*X5 -0.1149 0.0360 -3.20 0.003
X3*X6 -0.0399 0.0360 -1.11 0.276
X4*X5 -0.0729 0.0360 -2.03 0.052
X5*X6 -0.0673 0.0360 -1.87 0.071

S = 0.2034, R-sq = 97.09%, R-sq (adj) = 94.79 %, R-sq (pred) = 87.22 %

3.2. Statistical Analysis by ANOVA

Multiple regression analysis was done to analyze the RSM
data.  The goodness  of  fit  of  the  model  was  described by the
coefficient of determination R2, found to be 0.9709 in this case,
representing 97.09 % of the sample variation attributed to the
testing variables and only 2.91 % of the total  variance could
not be explained by the model. The R2 (adj) and R2 (pred) were
found to be 94.79 % and 87.22 % respectively, which reflected
a  very  good  fit  between  the  observed  and  the  predicted
responses,  inferring  that  the  model  is  reliable  for  ChOx
production in the present study. The P value for lack of fit of
the model (0.002) in Table 4, was very low which means that
the  model  adequately  describes  the  relationship  between  the
factors and the response variable.

The  test  of  significance  and  the  adequacy  of  the  model
were presented by ANOVA (Analysis of Variance), (Table 4).
The ANOVA of the quadratic regression model shows that the
model is highly significant as is evident from the high F value
(42.14) and very low value of P (0.000) obtained from Fisher’s
F test. This implies that the combinatorial influence of all the
independent variables substantially contributed to maximizing
the response, i.e, ChOx production.

3.3. Contour Plots

The  analysis  of  the  interaction  amongst  the  significant
variables and prediction of their optimum conditions for ChOx

production  were  represented  with  the  help  of  contour  plots
(Fig. 1a-h). Interactions of pH with inoculum size, incubation
temperature  and  shaking  speed  are  shown  in  Fig.  1  (a-c),
respectively, the change in color of the contour indicates that
the production of ChOx was affected mainly by the change in
pH of  the  medium as  compared  to  other  parameters  studied.
With  the  increase  in  medium  pH,  the  production  of  ChOx
increased  until  it  reaches  the  optimum  pH  (7.5),  whereas  a
further  increase  in  pH  decreased  its  production.  A  pH  drop
from 7.5 to 5.0 in the fermentation broth was observed (data
not  shown) after  24 h fermentation time,  while the pH again
increased  to  7.5  after  60  h  fermentation  time.  Since  this  pH
drop  was  observed  during  the  growth  phase,  it  may  be
attributed  to  the  acidic  environment  generated  due  to  the
accumulation  of  metabolic  intermediates  by  the  increased
number  of  bacterial  cells.  Bacterial  cells  are  impermeable  to
highly charged chemical species present in the medium. This
allows the cell to contain a reservoir of charged nutrients and
intermediate  metabolic  compounds,  thus  maintaining  a
significant difference between the internal and external concen-
trations of small cations (ex. H+, K+, Na+) [34]. The difference
in  H+  ion  concentration  brings  about  the  pH  change  in  the
medium.  In  the  stationary  phase  (72  -  96  h),  the  pH  was
retained  to  7.5  again  with  the  maximum  secretion  of
extracellular  ChOx in  the  medium,  which shows that  the  pH
drop  in  the  growth  has  no  adverse  effect  on  the  ChOx
production.  It  shows  that  the  pH  of  the  media  plays  an
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Table 4. ANOVA for quadratic model of ChOx activity.

Source DF Adj SS Adj MS F-Value P-Value
Model 23 40.0950 1.7433 42.14 0.000
Linear 6 9.5948 1.5991 38.65 0.000
Square 6 24.0178 4.0030 96.76 0.000

2-Way Interaction 11 6.4824 0.5893 14.24 0.000
Residual Error 29 1.1998 0.0414 - -

Lack-of-Fit 21 1.1466 0.0546 8.21 0.002
Pure Error 8 0.0532 0.0066 - -

Total 52 41.2948 - - -

influential  role  in  ChOx  production  through  the  submerged
fermentation process. The interaction of shaking speed with pH
Fig. (1c) shows maximum ChOx production at 175rpm and pH
7.5. The change in the color of contour in Fig. (1c) indicates
that the ChOx production decreased on further increasing the
shaking  speed.  Streptomyces  is  a  shear  sensitive  actino-
bacteria.  An  increase  in  shaking  speed  more  than  200  rpm
causes  damage  to  the  cell  structure  due  to  unbearable  shear
force, thereby increasing the cell mortality rate in fermentation
medium leading to a reduction in the ChOx production.

The input range of the six independent variables (-1 to +1)
were  taken  on  the  basis  of  results  obtained  from  the  pre-
liminary  experiments.

The interaction of inoculum age with fermentation period
and incubation temperature respectively, was significant (Table
2)  and  showed  a  positive  impact  on  ChOx  production,
presented in Fig. 1 (d-e). With the increase in inoculum age up
to 48 h, the ChOx production increased to its maximum while
subsequently  decreased  on  further  increase  in  inoculum age.
Inoculum  age  of  48  h  was  found  to  be  optimum  for
Streptomyces olivaceus, ascertaining that it is a slow-growing
microorganism  as  compared  to  other  bacteria.  The  response
was also influenced by incubation temperature; increasing the
incubation temp-erature above 30°C led to a decrease in ChOx
production,  (Fig.  1d),  while  it  remained less  influenced with
fermentation  period  (Fig.  1e).  As  shown  in  Fig.  (1f),  the
fermentation period has a positive impact on ChOx production
and maximum production was obtained in the stationary phase
which  started  around  72  h  and  lasted  up  to  120  h.  The
simultaneous increase in the fermentation period and inoculum
size  resulted  in  the  enhanced  ChOx production;  it  decreased
sharply  on  a  further  increase  of  inoculum  size  beyond  the
optimum 11.25 % (v/v). The interactive effect of inoculum size
and incubation temperature has significant positive effects, as
shown in Fig. (1g), the production of ChOx improves with the
increase  in  both  the  culture  parameters  until  its  optimum  is
reached,  further  increase  in  both  the  parameters  causes  a
decline  in  the  pro-duction  of  ChOx.  Fig.  (1h),  explains  an
equal  effect  of  both  the  culture  parameters  on  ChOx
production,  as  the  rapid  change  in  the  color  of  contour
indicates  improvement  in  response  with  the  simultaneous
increase in fermentation period and incu-bation temperature till
it  reaches  its  optimum  and  decreases  sharply  on  the  further
increase.  The  optimal  levels  of  fermen-tation  conditions  are
media pH (7.5), inoculum age (48 h), inoculum size (11.25 %),
fermentation period (72 h), incubation temperature (30°C) and

shaking  speed  (175  rpm).  Graphical  analysis  was  combined
with  the  numerical  optimization  and  production  of  ChOx
obtained  was  4.05  U/ml  under  these  optimum  cultural
conditions.

3.4. ANN Modeling

Artificial  neural  network  provides  a  non-linear  mapping
between the input  and output  variables  based on the training
directly  from the  raw data,  which enables  it  to  minimize  the
error  between  the  target  data  and  the  simulated  output  [35].
The network architecture of 6-25-1 was found to be optimum
for the prediction of desired response (Fig. 2). The adequacy of
the ANN model was evaluated by the MSE and MAPE values.
The MSE value was 0.039 and the MAPE value was 3.46 %. A
minimum  MSE  value  and  MAPE  ≤  10  %  indicates  good
prediction  accuracy  [36,  37].  The  regression  coefficient  for
training,  validation,  and  testing  (0.99)  which  was  close  to  1
indicates that the non-linearity in response was better captured
by the ANN model. This proves the capability of ANN to be
highly  competent  in  representing  the  relationship  between
culture condition parameters (i.e. pH of media, inoculum age,
inoculum size, fermentation period, incubation temperature and
shaking  speed)  and  ChOx  production.  The  ANN  simulated
predicted values of the response (ChOx concentration, U/ml)
for six different culture parameters have been given in Table 2.
The maximum amount of ChOx produced was 4.2 U/ml under
optimized culture conditions using the ANN methodology. The
ChOx  produced  by  S.  olivaceus  was  in  a  significantly  good
amount as compared to the maximum ChOx obtained by other
researchers in case of S. lavendulae (2.21 U/ml) [13], S. badius
(1.4 U/ml) [38] and Brevibacterium sp. (1.469 U/ml) [39].

3.5. Performance Evaluation of RSM and ANN Models

The values of ChOx activity (U/ml) predicted by ANN are
closer  to  the  actual  experimental  values  as  compared  to  the
RSM predicted ChOx concentration (Fig. 3a). The regression
coefficient (R2) between RSM predicted ChOx activity and the
actual experimental production of ChOx was 0.90 whereas R2

between the  ANN predicted and experimental  ChOx activity
was  0.96  (Fig.  3b).  It  means  that  the  ANN  predicted  ChOx
activity  is  more  close  to  the  experimental  ChOx  activity.  It
shows  that  ANN  is  a  better  predictor  than  RSM,  so  ANN
model  is  superior  to  the  RSM  model.  Pearson’s  correlation
coefficient (r) is a very good statistical method indicating how
strong a relationship is between two variables. The value of ‘r’
(ANN0.98 > RSM0.95) shows that ANN predicted values are clo-
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Fig. (3a). Comparison of observed and predicted ChOx concentration for RSM and ANN models.

Fig. (3b). Regression coefficients (R2) for the RSM and ANN predicted ChOx concentration (U/ml). R2 for RSM predicted ChOx concentration is
0.90 while R2 for ANN predicted ChOx concentration is 0.96.

ser  to  actual  experimental  values  as  compared  to  the  RSM
predicted values. The value of ‘r' confirms that ANN is a better
predictor than RSM. The Absolute Average Deviation (AAD)
for  ANN  (3.46  %)  and  RSM  (9.87  %)  reflects  a  higher
deviation  in  RSM  data  than  ANN.  Singh  and  Banik  [18]
obtained 18.47 % and 1.17% AAD values for RSM and ANN,
respectively. By above three statistical measures, i.e. regression
coefficient (R2), Pearson correlation coefficient (r) and AAD, it
was proved that ANN methodology was superior to RSM for
the prediction of experimental data.

3.6. Experimental Validation of the Model

The verification of the optimization results and accuracy of
the  model  was  accomplished  by  performing  the  experiments
thrice under optimized culture conditions i.e, pH of the media

(7.5), inoculum age (48 h), inoculum size (11.25 %), fermen-
tation  period  (72  h),  incubation  temperature  (30°C)  and
shaking speed (175 rpm). Under these culture conditions, the
maximum  ChOx  produced  was  4.2  ±  0.51  U/ml,  which  cor-
responds very well to the value predicted by the ANN model.

CONCLUSION

In this paper, the optimization of physical parameters for
ChOx  production  by  Streptomyces  olivaceus  MTCC  6820
through  submerged  fermentation  in  shake  flask  culture  was
investigated. Both the RSM and ANN were employed to model
the ChOx production (U/ml) as a function of six independent
variables  and  their  optimum  conditions  were  found.  ANN
optimized and established the  crucial  culture  parameters  and
their interactions affecting ChOx production. The present study
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signifies  that  ANN can  be  considered  as  an  effective  tool  to
model and predict optimum parameters for ChOx production.
This study would further provide an insight into the scale-up
studies of ChOx in a 5-l laboratory-scale bioreactor. The ANN
model  provided  more  accurate  predictions  than  RSM  with
higher regression coefficient (R2), greater Pearson correlation
coefficient (r)  and lower AAD values.  The ChOx production
was  enhanced  by  2.2  fold  after  optimization  of  the  culture
conditions as compared to the un-optimized culture conditions
(1.9 U/ml) with the maximum ChOx activity reaching up to 4.2
U/ml.
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