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Abstract:

Background:

This paper would be a starting point addressed to a methodology to minimize the effects on livings of man made Electromagnetic
Fields (EMFs) pollution.

Methods:

Given  that  previous  literature  highlighted  that  the  most  relevant  EMFs  effects  on  biological  systems  can  be  due  to  resonance
phenomena between electromagnetic field and organic matter, it was proposed here an algorithm to obtain values of frequencies of an
applied electromagnetic field far from resonant frequencies, depending on the natural frequencies and viscous damper of a biological
system. These frequencies have been named non-resonant frequencies.

Results:

The  displacement  of  the  α-helices  in  cellular  membrane  channels  due  to  EMFs  has  been  proposed  as  a  relevant  parameter  for
quantifying the result of the interaction between an applied EMF and organic matter, in order to find both the natural frequencies of a
biological system and the resonant frequencies at which α-helices displacement should be maximum.

Conclusion:

The non-resonant frequencies can be obtained using the algorithm proposed here.

Keywords: Electromagnetic field, Resonance, α-helix, Biological systems, Cellular membrane channels, Non-resonant frequencies,
Natural frequencies.

1. INTRODUCTION

The development of modern technology has induced an enormous increasing of the use of electric power devices
 working at  electromagnetic fields  frequencies at  50 or 60 Hz  (named  Extremely  Low Frequencies  Electromagnetic
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Fields – ELF-EMFs) and of broadcasting and mobile stations working at High Frequencies Electromagnetic Fields (HF-
EMFs) up to a few GHz.

Regarding harmfulness to human health of EMFs a very large scientific production has been published by single
researchers and some valuable studies have been published also by international working groups [1 - 6]. Some relevant
health effects that have been highlighted in [1 - 6] are neurodegenerative and cardiovascular disorders, alterations of
immune system responses and reproduction in animals and in humans, genotoxic effects, increasing of global incidence
of breast cancer, childhood leukaemia and general carcinogens.

The  amount  of  these  results  has  induced  the  International  Commission  on  Non-Ionizing  Radiation  Protection
(ICNIRP) to publish international guidelines in order to identify exposure limits of EMFs that are recommended not to
be exceeded [7 - 11].

Nevertheless, recent studies have showed that significant effects occur in simple organic systems even below the
EMFs limits recommended by the ICNIRP [12 - 24]. In particular, these studies showed that significant transitions from
proteins  α-helix  component  to  β-sheet  structure  (that  represents  proteins  unfolding)  and  orientation  towards  the
direction  of  the  applied  field  occur  under  exposure  to  EMFs  below  the  limits  recommended  by  the  ICNIRP.

Proteins unfolding is responsible for aggregation mechanisms, so that previous results lead us to hypothesize that
EMFs can be a cofactor for some diseases. Indeed, proteins aggregation can be considered the precursor of various
neurological disorders such as Alzheirmer, Parkinson and Huntington, because proteins aggregation in the fibrillar form
(the amyloid) can be associated with signs of neurodegeneration and some forms of anemia [25 - 33].

Some studies  showed that  some bioprotectors  can  induce  shielding action  against  exposure  to  EMFs [34 -  39].
Nevertheless, we do not know what may be the side effects in humans living functions of a continuous use of such
bioprotectors.

However, previous studies hypothesized that natural frequencies in livings could be close to the frequencies of man-
made EMFs, so that a resonance phenomenon could occur amplifying the result of the interaction mechanisms between
EMFs and organic matter [40 - 48]. Following this scenario, this study starts from the assumption that, similar to the
existence of frequencies at which a resonance phenomenon between EMFs and organic matter occurs, there may be
frequency regions with an opposite effect to that of resonance, in which the effects of interaction between EMFs and
organic matter are minimal. We have named such frequencies ‘non-resonant frequencies’. In order to hypothesize to
plan electronic devices working at such frequencies, this study proposed an algorithm to calculate the non-resonant
frequencies of EMFs as a function of natural frequencies of organic matter. In particular, the displacement of α-helix in
cellular  membrane channels  due to the interaction with EMFs has been proposed as a parameter  useful  to quantify
harmful effects  of  EMFs on livings,  given that  it  was shown that  the orientation of α-helices in cellular  membrane
channels along the direction of the applied field should induce an increase of ions flux across the channel, changing
cellular functions [24]. The existence of α-helix structure in proteins was proposed in 1951 by Linus Pauling and its
existence  was  confirmed by X-ray  crystallography.  The  α-helix  consists  of  3.6  amino-acid  residues  per  turn  in  the
polypeptide chain which is stabilized by hydrogen bonding between the amide hydrogen of one peptide bond and the
carbonyl oxygen of another. The α-helix structure has a fundamental role in livings because it is present in all types of
biological membranes [49 - 51].

The  aim  of  this  study  was  to  propose  an  algorithm  to  find  the  non-resonant  frequencies  at  which  α-helices
displacement be minimum, in order to minimize the effects of EMFs on livings as it is explained in the next sections.

2. METHODS

2.1. The Non-Resonant Frequencies Algorithm

Resonance is a phenomenon represented by the oscillation at high amplitude of a material, which occurs when the
material is subjected to an external forcing at a specific frequency known as resonant frequency. When the frequency of
the external forcing is close to a natural frequency of the material, a large vibration of the system is produced giving rise
to the phenomenon named resonance.

Generally, a material has more than one resonant frequency. Each substance has some natural vibration frequencies
that are characteristic of the material, depending on the frequencies of free vibrations of the molecules forming the
material.  The  fundamental  frequency  is  the  lowest  natural  frequency,  which  gives  rise  to  the  maximum-amplitude
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oscillation of the system if it is stressed by an external forcing at that frequency. The frequencies at which a material
will vibrate with large amplitude if it is forced are the natural frequencies of the material.

In contrast, if the system will be exposed to frequencies very different from its resonant frequencies, the system
would not vibrate significantly.

Obviously,  also  biological  systems  are  expected  to  have  resonance  frequencies  in  some  regions  of  the
electromagnetic spectrum. In particular, in previous literature it was proposed that biological systems can exhibit natural
resonant frequencies in the microwave region [40, 52 - 56].

First, in order to study the interaction between EMFs and organic matter, an appropriate model has to be chosen to
represent the response of biological systems to EMFs.

However, given that a biological system is a complex system, it would be represented by a large number of natural
frequencies that cannot all be taken into account. Thus, we focused on cellular membrane channels α-helices, because
their displacement due to EMFs should change the delicate equilibrium of ions flux across cells membrane channels
[21, 24].

The  α-helix  behavior  in  cellular  membrane  channels  in  response  to  an  applied  EMF  can  be  described  by  a
viscoelastic model by means of three parameters, the spring, damper and mass elements. The modeling by a viscoelastic
model of a generic organic system under an applied EMF was already proposed by [57, 58].

The external force acting on a charged particle can be represented by the term qE, in which q is the charge of the
organic system and E is the electric field component of the EMF, which can be expressed by a sinusoidal function:

(1)

Generally, this term is correlated to the magnetic component by Maxwell’s equations. Nevertheless, it was shown
that the far-field approximation can be applied to the EMF emitted by wireless devices at working distance, whose the
most representative is mobile phone [59]. In this case, the electric and magnetic field components are closely related as
the ratio of the electric field to the magnetic field component is given by:

(2)

where μ o and ε o are the permeability and permittivity of free space, respectively, so that it is sufficient to evaluate
only one of them.

Furthermore,  given  that  the  organic  system exposed  to  EMF should  have  non-negligible  dimension,  the  torque
induced by the EMF on the system has to be taken into account. In addition, it has to be compared to the Brownian
motion due to thermal agitation, to which the organic system embedded in aqueous environment is subjected. To this
aim, the angular impulse from EMF, that is ΔE*μ, should be compared with the mean angular momentum from thermal

agitation , in which Ih is the moment of inertia of the organic system. Adair performed a simulation using
hemoglobin as a typical simple organic system [60], providing the result that the mean angular momentum from thermal
agitation  is  larger  than  the  impulse  from  an  applied  electric  field  with  amplitude  E=100  kV/m.  Nevertheless,  the
simulation of [60] can be applied to a dipole exposed to a EMF in the vacuum. In contrast typical organic systems such
as cells or proteins α-helices can be considered macrodipoles embedded in a aqueous medium whose viscosity cannot
be neglected, so that they cannot follow the oscillation of the applied HF-EMF due to the inertia of molecules and the
viscosity of the medium, placing theirself at an average position along the direction of the field [24]. However, recently
it was shown that 3 h exposure to EMFs of hemoglobin in aqueous solution samples induces that the impulse from the
magnetic field overheads the mean angular momentum from thermal agitation [61]. The term due to thermal molecular
agitation represents the viscosity of the medium in which the organic system is embedded can be taken into account by
the damper coefficient of the medium ν.

Finally, the equation of motion of this viscoelastic model which can represent the behavior of the organic system
exposed to EMFs is represented by the following equation:

(3)
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in which m is the mass of the system, ν is the damper coefficient, k is the spring element of the system and ωs is a

fundamental  frequency  of  the  system.  In  addition,   and  x  are,  respectively,  the  acceleration,  velocity  and

The generic solution of Eq. (3) is as follows:

(4)

where x o and φ are the amplitude of displacement and the phase angle, respectively, that are to be calculated. Let we
consider that the oscillation of the system begins with beginning of exposure to the external field, so that it is φ = 0.
Hence, we may rewrite the Eq. (4) as follows:

(5)

The corresponding velocity and acceleration of the charged particle are, respectively,

(6)

(7)

Solving Eq. (3) for the displacement, putting x = x o for simplicity, we get:

(8)

A resonance phenomenon occurs when the frequency of the applied field is close to a fundamental frequency of the
system ω = ωs, giving the maximum value of displacement x which is provided by Eq. (8).

Rationalizing the denominator of Eq. (8) where the imaginary unit appears, the Eq. (8) can be written as follows:

(9)

The  algorithm  proposed  here  is  based  on  the  assumption  that  values  of  frequencies  ω  that  minimize  the
displacement of a charged particle in Eq. (9) exist and can be found using the mathematical condition that the first
derivative of Eq. (9) is equal to zero:

(10)

This mathematical condition is expressed by the following equation:

(11)

Solving the Eq. (11) with respect to the frequency ω of the applied electric field we get:

(12)

The frequency values ω can be obtained by Eq. (12) as a function of the natural frequency ωs and of the damper
coefficient  values of  an organic system. These frequency values ω should minimize the displacement  x of  charged
particles exposed to an applied electric or magnetic field and can be named non-resonant frequencies. This procedure
can be easily extended to an applied HF-EMF.

In  conclusion,  it  was  shown  that  given  an  EMF acting  on  an  organic  system,  the  smallest  displacement  of  the
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organic  charged  particles  exposed  to  the  field  can  be  found  at  particular  frequencies  of  the  applied  EMF,  that  are
correlated to the natural frequency and damper coefficient of an organic system.

2.2. Applying the Non-Resonant Frequencies Algorithm

Given that Eq. (12) can provide the non-resonating frequencies in any biological system as a function of natural
frequency ωs and damper coefficient ν, the problem seems to be easily solved by knowing these values.

Nevertheless,  the  greatest  difficulty  is  just  knowing  the  natural  frequencies  ωs  and  damper  coefficient  ν  in  an
organic system.

Previous literature provided some values of natural frequencies in some organic systems. For instance, some authors
proposed the possibility that biological systems can exhibit natural frequencies in the MWs frequencies range [43 - 48,
52 - 58, 62]. [63] proposed resonance frequencies at 41.3 and 51.7 GHz for the bacterium Escherichia coli.

Nevertheless, a biological system is very complex system so that its natural frequencies cannot be easily found. In
order to find these frequencies, we can choose one of the most representative parameters of a biological system whose
interaction with an applied EMF gives rise to the maximum change in the livings functions of the organism.

3. RESULTS

In our opinion, this physical-chemical parameter which has a fundamental role in the resonance phenomenon with
an  applied  EMF  can  be  the  flux  of  ions  across  cellular  membranes,  because  its  alteration  changes  the  delicate
equilibrium inside the cell altering cell viability. Indeed, ion channels in cellular membranes have been demonstrated to
have a fundamental role in cellular functions [64 - 67].

In this regard, the displacement of α-helices in cells membranes channels caused by resonant frequencies of an EMF
should alter the flux of ions across the channels, inducing damaging of cells [24]. In contrast, the application of an EMF
with non-resonant frequencies should induce lesser α-helices displacements than an EMF with resonant frequencies.

In this scenario, the resonant frequencies in cellular membrane channels can be found measuring the displacement
of  the  α-helices  in  membranes  channels  as  a  function  of  the  frequency  of  an  applied  EMF,  following  the  protocol
accurately described in [13, 15]. For instance, Circular Dichroism (CD) spectroscopy can be used to measure the shift of
the alpha helix with respect to its resting position in the cellular membrane channels as a function of the frequency of an
applied EMF. CD is a spectroscopic technique which is generally used to study the secondary structure of proteins and
in particular of membrane proteins [68]. However, this technique may be coupled with more sophisticated techniques
such as X-ray crystallography or NMR spectroscopy. CD spectroscopy has the advantages of exploring a wide range of
solution conditions and the rapid data collection. Other useful techniques to determine the orientation of proteins α-
helices is the Nonlinear Sum Frequency Generation Vibrational (NSFGV) spectroscopy which can be coupled with
linear vibrational spectroscopic techniques such as infrared spectroscopy and Raman scattering [69]. In previous studies
measurements  of  α-helices  tilt  orientation  have  been  carried  out  using  CD  spectroscopy,  NMR  and  fluorescence
spectroscopy and are reported in [70 - 72], respectively, showing that α-helices tilt orientation can be easily measured
before  and  after  exposure  to  EMFs  in  any  type  of  tissue.  In  addition,  it  was  already  shown  in  [21,  24]  that  the
orientation  of  cellular  membrane  channels  α-helices  along  the  direction  of  the  applied  EMF  should  cause  the
enlargement of cellular membrane channels, inducing the increasing of ions flux across cells channels and changing
cellular functions.

Once  the  values  of  the  natural  frequencies  at  which  the  displacement  of  the  α-helices  in  cellular  membranes
channels is maximum have been found, the values of the non-resonant frequencies can be obtained by Eq. (12) and
using damper coefficient values such as proposed in [73 - 77].

CONCLUSION

Given the numerous evidence on the harmful effects of EMFs on livings, a strategy to reduce human exposure to
EMFs was investigated. Considering that it has been highlighted in previous literature that a resonance phenomenon can
occur whenever the frequency of the EMF is close to the natural frequency of the biological system invested by an
electromagnetic  radiation,  an  algorithm has  been  proposed  here  in  order  to  obtain  frequencies  far  from the  natural
frequencies of a biological system.

To this aim, the displacement of α-helices in cellular membrane channels has been proposed as a parameter aimed to
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measure  the  intensity  of  the  interaction  between  EMF  and  organic  matter,  in  order  to  find  the  biological  natural
frequencies that have the most important role in cellular functions of livings.

Once such natural frequencies have been found in typical organic tissues by measurements described at the end of
previous section, non-resonant frequencies can be obtained using the algorithm here proposed, in order to hypothesize
to plan electronic devices working at such frequencies, minimizing harmful effects of EMFs on livings.
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