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Abstract: Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that
they  affect  reproductive  health,  has  been  accumulating  for  the  last  few  decades.  In  this  review  of  recent  literature,  we  present
evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative
EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC),
a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a
commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively,
these  studies  show  that  exposures  during  fetal  and  neonatal  periods  cause  developmental  reprogramming  leading  to  adult
reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to
these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
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1. INTRODUCTION

It  is  well  known that toxic contaminants in air,  water,  and agricultural produce have contributed to exposure to
mutagens  that  cause  numerous  health  problems  including  cancers  [1  -  3].  Large  numbers  of  these  xenobiotics  are
endocrine-disrupting chemicals (EDCs) that are, in general, not mutagenic but can cause more subtle effects: they cause
disruption in  hormone synthesis  and signaling.  While  many hormone responsive  organs  are  sensitive  to  EDCs,  the
ovaries and uteri are most sensitive to the EDCs that mimic estrogen, the female steroid hormone.

The direct consequences of the detrimental effects of EDCs on female reproductive health are impaired reproductive
organ function, infertility and/or cancer. However ovarian dysfunction can lead to reduced serum estradiol levels, which
are associated with increased risk of cardiovascular diseases [4], loss of bone density [5, 6], and sexual dysfunction [7].
In addition, the effects on the female germ cells, the oocytes, can potentially cause multigenerational effects. Therefore,
EDCs  that  disrupt  female  reproductive  health  have  long-term  and  widespread  effects.  Furthermore,  the  ubiquitous
expression of estrogen receptors (ERs) in multiple tissues make the actions of myriad xenoestrogens possible.

It has been shown in numerous epidemiological studies that women’s reproductive health is severely affected by
exposure to estrogenic EDCs in the form of pharmaceuticals, pesticides, industrial products such as plasticizers, and
phytoestrogens [8 - 13]. The impaired fecundity rate in the U.S. increased from 11% to 15% between 1982 and 2002
[14, 15]. Although various confounding factors such as lifestyle changes could have contributed to this decline, the role
of EDCs cannot be discounted. The incidence of female reproductive disorders such as early puberty, premature ovarian
failure, impaired fertility as well as breast, ovarian, and uterine cancers [16] have been documented in animal studies
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with  estrogenic  EDCs and  have  been  substantiated  by  a  large  body of  epidemiological  evidence  from humans  and
wildlife as well [17 - 23].

Exposures to EDCs in adulthood cause severe reproductive disorders as mentioned above but the most long-lasting
diseases that occur by adulthood are caused by exposures in fetal and neonatal periods [24, 25]. Embryonic epigenetic
programming is fine-tuned during differentiation and development of the organs [26]. Developmental reprogramming
of the organs involves disruption in the epigenetic reprogramming and has been considered to be a mechanism by which
the developmental trajectory of these organs is altered [26 - 28]. The somatic components of the ovary develop during
mid-to-late  gestation  and  are  modified  throughout  postnatal  folliculogenesis  [29].  Similarly,  it  is  proposed  that
epigenetic reprogramming of the uterine epithelium occurs as the early developmental, tissue organizational events take
place in the first week after birth in rodents [30]. Therefore any disruption in the ovarian and uterine epigenomes at this
stage  could  lead  to  altered  gene  expression  by  adulthood  [24,  31  -  33].  In  addition,  germ cells  undergo  their  own
epigenetic programming: the germ cell epigenome that is methylated early in embryonic stage is demethylated in mid-
gestation,  and  remethylated  in  a  sex-specific  manner  at  tissue-specific  developmental  stages  [27,  28],  Specifically,
female  germ cell  remethylation  is  initiated  during  the  early  postnatal  period,  during  follicular  assembly  and  initial
recruitment, and continues throughout oocyte growth until the antral follicle stage specifically in rodents [34]. Recent
observations in mouse and bird embryos have shown that the precursors of oocytes (primordial germ cells) express
functional estrogen receptors, namely ESR-1 and GPR-30, respectively, which may be able to activate non-genomic
signaling in such cells via the PI3K/AKT signaling pathway [35, 36]. These germ cell processes can also be a target for
EDCs,  suggesting  that  EDCs  might  affect  germ  cell  development  during  a  crucial  period  of  their  nuclear
reprogramming  [37].

There are numerous lines of evidence emerging that suggest that the exposure to estradiol or estrogenic EDCs can
cause  epigenetic  alterations  in  sensitive  developmental  windows  that  might  have  long-term  effects  by  adulthood
[25, 38]. DNA (CpG) methylation and histone modifications are necessary for tissue-specific gene regulation. Usually,
an  increase  in  DNA methylation  at  a  locus  is  associated  with  the  interference  of  transcription  factor  (TF)  binding,
resulting in down-regulation of gene expression, and vice versa [39 - 42]. Post-translational modifications on histone
proteins  of  the  nucleosomes  such  as  acetylation,  methylation,  and  phosphorylation  at  specific  amino  acid  residues
(lysine, arginine, serine, or threonine) contribute either to euchromatin or the silencing of loci (heterochromatin). This
silencing can be reversible or irreversible,  depending on further modification [43 - 46].  For example, some histone
methylation events (e.g., H3K9me3) work in conjunction with DNA methylation to stably silence genes [47].

2.  CRITICAL  OVARIAN  AND  UTERINE  DEVELOPMENTAL  STAGES  SENSITIVE  TO  ESTROGENIC
EDCS

A female’s reproductive lifespan depends on the size and health of the initial pool of primordial follicles and their
progression and maturation into primary, secondary, antral, and eventually ovulatory follicles. Complex bidirectional
communication occurs between the oocyte and its surrounding somatic cells involving stimulatory inputs from local
paracrine factors as well as steroid hormones [48 - 50]. The gonadotropins, follicle stimulating hormone (FSH) and
luteinizing hormone (LH),  have a significant  role in the selection and maturation of the follicles via  stimulation of
IGF-1 and estrogen signaling pathways among others [51]. Once an oocyte is fertilized, the implantation of the embryo
into the uterus and successful  pregnancy and parturition are dependent on healthy uterine function.  Critical  uterine
developmental windows overlap with those of the ovary in the first two weeks after birth, with the development of
luminal epithelium and the stromal glandular epithelium. These processes are regulated by the WNT and HOX gene
families and are responsive to IGF-1 and estrogen signaling as well [52 - 54]. Therefore, estrogenic EDC exposures
during early ovarian and uterine development are a major threat and have the potential to reprogram ovarian and uterine
functions.

2.1. Primordial Follicle Development and Transition to Primary Follicles in Ovaries

Oocytes are arrested at the early diplotene phase of meiotic prophase I and enclosed in nests surrounded by somatic
pregranulosa  cells.  Starting  at  E16.5,  in  mice  and  rats,  most  oocytes  are  eliminated  via  apoptosis  [55  -  57].  The
remaining oocytes are surrounded by a single layer of flattened pregranulosa cells and form the primordial follicles, a
process that is almost complete by PND 3-4. Most of the primordial follicles remain quiescent, but some begin growing
and  transition  to  the  next  stage,  primary  follicles.  Both  of  these  early  processes,  primordial  follicle  formation  and
primordial to primary follicle transition (the initial recruitment), are tightly regulated by interactions between paracrine
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factors, transcription factors, and steroid hormones while being independent of gonadotropins. However, since these
processes determine the success of female reproduction, endocrine disruption can lead to early depletion of follicles and
therefore may result in early reproductive senescence [50].

In mouse and rat models, estradiol and progesterone have been shown to inhibit primordial follicle formation by
inhibiting apoptosis [48, 49] a process that could be reversed by pro-apototic TNFα [58, 59]. The actions of estradiol
and estrogenic EDCs (e.g., DES) may involve the inhibition of pro-apoptotic molecules, such as Fas ligand [60] leading
to multioocyte follicles (MOFs) that in the long-term, do not progress to healthy ovulations [48]. On the other hand,
activins have a stimulatory role in primordial follicle formation. Neonatal activin treatment increased the number of
postnatal primordial follicle by 30% in mice. However, the excessive number of follicles was not maintained at puberty
or  beyond  [61].  Thus,  there  is  an  interplay  between  the  inhibitory  activity  of  estradiol  and  the  stimulatory  role  of
activins in follicular formation. Neonatal estradiol or DES exposures induce MOFs but also inhibit activin levels in the
ovary [62]. These results suggest that the paracrine systems that control the primordial follicle formation process can be
influenced by estrogenic EDCs.

The  oocyte-derived  FOXO3  is  a  major  suppressor  of  primordial  to  primary  follicle  transition  [63].  When  it  is
deleted in mice, although  the initial  primordial  follicle pool is established normally,  primordial follicles  are activated
en masse, leading to early elimination of follicular reserve and reproductive senescence. Androgens inhibit FOXO3
activity [64], and also suppress the expression of growth differentiation factor-9 (GDF9), a well-known stimulator of
follicle development beyond the primary stage. As a result, exposure to androgens causes an accumulation of preantral-
stage follicles. Overall, estrogens may inhibit the initial recruitment by stimulating inhibitory paracrine factors (e.g.,
AMH) while androgens may stimulate the initial recruitment by inhibiting suppressive factors (e.g., FOXO3).

2.2. Follicle Selection, Antral Follicle Development, and Ovulation

A  single  follicle  or  multiple  follicles,  in  monoovulators  versus  polyovulators,  within  a  recruited  cohort  is/are
selected at the antral stage to complete folliculogenesis and achieve ovulation. An important criterion (among several)
for the selection is that the follicle secretes high levels of estradiol. Local growth factors such as insulin-like growth
factors  (IGFs),  activins,  transforming  growth  factor  (TGF)  α  and  β  ,  hepatocyte  growth  factor,  and  FGF7  are  also
required for this process [65].

In addition, IGFs are considered to be critical for follicular maturation since they stimulate cell proliferation and
steroidogenesis in granulosa cells of various species [66, 67]. In contrast, IGF binding proteins (IGFBPs) can suppress
FSH-induced follicular growth and differentiation by sequestering IGF-I protein and inhibiting its activity that leads to
atresia [68, 69]. Prior to maturation, estradiol production is markedly elevated in the selected antral follicles, which
exerts  a  positive-feedback  effect  on  gonadotropin  secretion.  The  rise  in  FSH  and  LH  supports  further  increase  in
steroidogenesis  and  initiates  luteinization,  whereby  granulosa  cells  switch  from  an  almost  exclusive  production  of
estradiol to the production of both estradiol and progesterone. The feedback dynamics within the HPG axis continue
and  culminate  with  the  preovulatory  LH  that  stimulates  ovulation  [70].  Multiple  factors  play  roles  in  ovulation,
including ESR2, progesterone receptor, proteases, epidermal growth factor-like proteins, and prostaglandin synthase-2
(see [70] for review). Following ovulation, the remnants of the ovulated follicle are stimulated by LH to terminally
differentiate into the corpus luteum (CL). The CL, as a primary source of progesterone, is essential for enabling the
initiation and maintenance of pregnancy (reviewed in [71, 72]).

A salient point to be noted regarding these processes is that the ovary is a hormone-responsive tissue and contains
follicles  at  every  stage  of  development  that  are  highly  dynamic  and  require  temporal  and  cell-specific  and  stage
dependent regulation of numerous genes, which could be controlled by epigenetic mechanisms. Therefore they can be
affected  by  developmental  exposures  to  EDCs  thus  making  the  ovary  a  unique  target  for  EDCs  for  epigenetic
modulation.

2.3. Critical Steps in Prenatal and Postnatal Uterine Organogenesis

The female reproductive tract (FRT) - oviducts, uteri, cervix, and vagina - develops from the Mullerian ducts (MD)
in  females  [73].  The  development  of  the  FRT  has  been  described  in  detail  previously  [74].  For  the  purpose  of
understanding the most severe effects of EDCs on the FRT, uterine development is most pertinent to this review. The
uterus has varied roles depending on the reproductive stage: implantation, maintenance of pregnancy, and parturition.
Prenatal uterine organogenesis involves the regression of the Wolffian ducts in the absence of MIS and testosterone and
the development of the MD after the sexual differentiation of the XX gonad. Fusion of the MDs and formation of the
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uterus  is  complete  by  E16.  Mice  and  rats  have  a  duplex  uterus  while  humans  have  a  single  uterus,  however  the
histological architecture has similarities. The uterus consists of the endometrium, whose structure actively alters during
the estrous/menstrual cycle, and the myometrium that has a smooth muscle layer that sorrounds the endometrium. The
luminal epithelium (LE) of the endometrium is composed of simple and columnar epithelial cells and is surrounded by
uterine/endometrial glands. Uterine functional development occurs postnatally in rodents, starting at PND 1-3 [75],
which is equivalent to human uterine development at around gestational week 14 [76]. At birth, in rodents, the uterus
does not have endometrial glands but their rudiments develop by about PND 5 and becomes apparent by PND 7-9.
Subsequently the glands extend into the stroma and myometrium and become organized into bundles and are fully
developed by the second week after birth [77 - 79]. Numerous signaling pathways such as the WNT and HOX pathways
are involved in the uterine formation, patterning and organogenesis [80 - 82]. However postnatal uterine function is
dependent  on the  coordinated induction of  several  growth factors,  cytokines  and their  receptors  (e.g.,  IGF-1,  FGF,
activin/follistatin signaling) in addition to estrogen signaling [83 - 85]. In fact,  these signaling pathways are highly
responsive to and augment the estrogen signaling. Thus developmental and functional uterine stages are prone to EDCs’
actions.

2.4. Expression Patterns and Roles of ERs in the Ovaries and Uteri

Most estrogenic EDCs have been shown to activate genomic or non-genomic estrogen signaling. These actions are
mediated via the endogenous ERs (ESR1 and ESR2) in the ovary and uterus. Thus the ubiquitous expression of ERs in
multiple  reproductive  tissues  make  them  prone  to  the  actions  of  EDCs.  ESR1  and  ESR2  are  expressed  in  early
folliculogenesis in  a  cell  and  stage  specific  manner  in  several  species,  including  primates,  cattle,  rats,  and  mice
 [25, 86 - 89]. ESR1 is expressed primarily in theca cells, and ESR2 is expressed in granulosa cells and essential for
FSH-directed granulosa cell differentiation as well as for LH responsiveness [90, 91]. ESR2 also facilitates mechanisms
that promote follicle maturation from the early antral to the preovulatory stages [92, 93]. In addition it may play a major
role in primordial follicle formation in the ovary [93 - 97]. In contrast, although ESR1 plays a role in the regulation of
theca cell steroidogenesis in the ovary, its main function is to mediate estrogen-regulated feedback in the hypothalamus
and pituitary [98, 99]. On the other hand, very little is known about non-genomic estrogen signaling that is mediated by
membrane bound ESR1 (mESR1) in the ovary but recent evidence has demonstrated a role for PI3K/AKT signaling
downstream of potential mESR1 activation in the ovary [25, 100].

In the uterus, ERs are actively expressed during Mullerian duct development and are seen as early as E13 in the
mesenchyme, while the uterine epithelium expresses ERs soon after birth [101]. Interestingly, uterine development is
estrogen-independent during neonatal development. However the presence of ERs makes the uterus susceptible to the
actions of EDCs. The predominant ER receptor in the uterus is ESR1; using KO studies, it has been demonstrated that
ESR1  disruption  causes  hypoplastic  uteri  [90,  102].  It  is  expressed  in  both  the  luminal  and  glandular  epithelial
compartments.

3.  EPIDEMIOLOGICAL  EVIDENCE  FROM  HUMANS  SUPPORTING  INVOLVEMENT  OF  EDCS  IN
FEMALE  REPRODUCTIVE  DISEASE  AND  IN  VIVO  STUDIES  WITH  EDC  EXPOSURES  IN  RODENT
MODELS

3.1. Diethylstilbestrol (DES)

For about 30 years between the 1940s and the 1970s, DES, a nonsteroidal synthetic estrogen was prescribed at doses
of 5-150 mg/day, to pregnant women at risk of miscarriage. The most convincing human evidence that estrogenic EDC
exposure during development can permanently affect female reproduction, comes from the reports that followed [103].
Numerous abnormalities in the reproductive, cardiovascular, and immune systems have since been reported in both
male and female offspring of women treated with DES, and similar effects have been demonstrated in animal models
(reviewed in [104]). These effects are being observed in the granddaughters of DES-treated women as well [105, 106].
While  DES  caused  vaginal  clear  cell  adenocarcinoma  in  only  0.1%  of  the  female  offspring,  over  95%  reported
reproductive tract dysfunction and poor pregnancy outcomes [107, 108]. There is evidence of multi-generational effects
and epigenetic mechanisms have been implicated [109 - 112].

3.2. DES in vivo Studies

Mice  injected  with  a  single  dose  of  10  μg/kg  DES  on  E15  and  examined  at  7  months  of  age  had  no  CL  and
numerous atretic follicles [113]. They were also found to have vacuolated interstitial tissue with lipid droplet inclusions.
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Other studies with vary doses of DES (5 μg/kg to 100 μg/kg) administered either in utero (E9-E16) [114], or neonatally
(PND 1-5) [115], demonstrated that adult DES ovaries developed similar hypertrophy and vacuolation of interstitial
tissue, hemorrhagic cysts and lack of corpora lutea. These animals also had high levels of testosterone [114]. There was
a dose-dependent reduction in the number of the litters as well as the number of oocytes ovulated after stimulation with
exogenous gonadotropins [116]. The oocytes derived from such treated ovaries and used in IVF showed lower levels of
fertilizability, suggesting reduced oocyte quality [117 - 119]. However, 5 µg/day DES-treated ovaries transplanted into
untreated ovariectomized host mice were able to give rise to normal female offspring that in turn gave birth to normal
size litters and had normal uterine morphology, suggesting that the DES treatment effects were not mediated via germ
cells [120].

DES can bind to both ERs with many fold higher affinity than estradiol  [94].  Multiple studies from Iguchi and
colleagues showed that in utero (E15-18) and neonatally (PND 1-5) DES-treated mice had ovaries containing excessive
number of MOFs by adulthood [121, 122]. MOFs were also observed in ovaries that were treated in vitro at PND 1-5,
following their transplantation to untreated mice, suggesting a direct effect of DES in the ovary [122]. Recent studies
showed that neonatal exposure to 3 μg/kg DES induced MOFs, a process mediated by ESR2 and not ESR1 [97]. DES
exposure was shown to reduce oocyte apoptosis (potentially suppressing oocyte nest breakdown) via ESR2 signaling
mechanisms. Furthermore, it was hypothesized that such alterations in the germ cell and somatic cell populations may
affect the invasion of pregranulosa cells and basement membrane remodeling during primordial follicle formation [60].
Interestingly, the incidence of MOFs has been reported with other EDC exposures as well (see below, [96]).

It is well known that DES caused T-shaped uteri and clear cell adenocarcinoma of the uterus, cervix, and vagina in
women whose mothers were exposed to DES during pregnancy [123]. Such observations have been replicated in the
progeny of DES-treated mice that show malformations of the uterus, squamous metaplasia of the luminal and glandular
epithelium, endometrial hyperplasia and leiomyomas, and oviductal proliferative lesions [124, 125]. Ovariectomized
animals  when  supplemented  with  estradiol  are  able  to  respond  by  a  transient  increase  in  gene  expression  and
concomitant uterine proliferation and growth [126 - 128]. When such a stimulus is removed, the uterus returns to its
unstimulated  state.  However,  when  DES  or  estradiol  is  administered  during  neonatal  development,  expression  of
immediate early genes such as lactoferrin, EGF, and proto-oncogenes such as c-fos, c-jun, and c-myc is upregulated
even into adulthood [126, 129, 130]. Inversely, expression of genes that are necessary for uterine development, such as
the Abdominal B (AbdB) Hox gene, Hoxa-10, (known to be controlled by estradiol and progesterone, [131]), Wnt7a as
well as Msx2 are repressed leading to structural abnormalities of the reproductive tract [132 - 135]. Numerous studies
have been conducted to assess  the methylation patterns of  promoters  of  several  of  these estrogen-responsive genes
associated with uterine development.

Neonatal DES exposure in mice caused ~ 90% incidence of epithelial cancers of the uterus by 18 months of age
[136]. Furthermore, the promoter region of the lactoferrin gene was found to be hypomethylated in the adult uterus.
However,  if  the animals were exposed for the same length of time during adulthood,  no such DNA methylation or
expression defects were observed [137]. Subsequently, it was also found that exon 4 of the c-fos gene was extensively
hypomethylated  while  the  promoter  region  and  intron  1  was  unaffected,  thereby  potentially  allowing  for  the
upregulation of c-fos expression [138]. QPCR studies performed by Sato and colleagues examining the expression of
Dnmts in neonatally DES exposed C57BL/6 mice, revealed that expression of Dnmt1 and Dnmt3b was decreased at
PND5  in  DES-treated  mice,  and  the  pattern  continued  until  PND14  [139].  Interestingly,  it  was  found  that  human
leiomyoma samples had alterations in the levels of Dnmts as well, with concomitant global hypomethylation [140].

DES down-regulates Hoxa gene expression akin to the effects associated with uterine abnormalities found in Hoxa
KO mice. The predominant phenotype is the loss of boundary between the oviduct and uterus. It has been shown that
the anterior to posterior specific pattern of Hoxa-9 is essential for the normal development and function of the uterus
and that DES causes a posterior shift of Hoxa-9 and Hoxa-10 expression and homeotic anterior transformations [132].
A recent report by Bromer and colleagues has shown that after in utero (E9-16) exposure to 10 μg/kg DES, there is
hypermethylation  in  the  promoter  and  intron  1  regions  of  Hoxa-10  gene,  in  the  caudal  part  of  the  uterus  with  a
concomitant increase in the Hoxa-10 expression in the same region [141]. Recent reports have suggested that cell fate
decisions are altered due to exposure DES.

Interesting  new  studies  have  now  provided  a  link  between  mESR1  signaling  and  regulation  of  histone
modifications. It was found that rapid PI3K/AKT signaling downstream of membrane-associated ER, in response to
estradiol as well as DES, caused reduction in trimethylation of H3K27, a repressive histone mark. More interestingly,
activation of this nongenomic signaling caused reprogramming of the uterine gene expression profile [46, 142]. It has
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also been found that neonatal DES exposure temporarily alters expression of multiple chromatin-modifying proteins
and  persistently  alters  epigenetic  marks  in  the  adult  uterus  at  the  sine  oculis  homeobox  1  locus  which  along  with
lactoferrin (see above) is an estrogen responsive gene whose expression is persistently upregulated [38].

3.3. Methoxychlor (MXC)

Methoxychloris a well-studied organochlorine pesticide that is used as a replacement for DDT. It is an estrogenic
compound that demonstrates low-affinity binding for estrogen receptors [143]. The major MXC metabolites, HPTE and
mono-OH MXC, can function as estrogenic, anti-estrogenic, or anti-androgenic compounds [144], and therefore it is
used  as  a  model  compound  [145].  Epidemiological  studies  have  shown  that  there  is  a  strong  association  between
developmental  exposure  to  organochlorine  pesticides  and  underdeveloped  fetuses  and  subsequent  female  fertility
problems [146].  For  example,  presence  of  p’p’-DDT in  the  mothers’  serum 1-3  days  after  their  daughters’  birth  is
associated with a longer time of pregnancy (TPP) as well as with a reduced probability of pregnancy and high infertility
[147]. A two to threefold increase in risk of prolonged time-to-pregnancy and spontaneous abortion, among female
greenhouse workers [13, 148] and increased infertility in women with agricultural work histories has also been noted
[149].

3.4. Methoxychlor in vivo Studies

Adverse effects that were observed in these association studies are similar to the effects observed in experimental
animals exposed to MXC during adulthood. Exposure to MXC (2500 or 5000 ppm) interfered with the normal estrous
cycle, reduced mating rate and litter size [150]. However, when the exposure was withdrawn, these animals reverted to
regular  estrous  cycles.  In  general,  this  observation  applies  to  most  other  estrogenic  EDCs  as  well.  Further  studies
demonstrated that adult mice or rats that were exposed to MXC showed persistent vaginal estrus [151], direct inhibition
of  embryonic  growth,  implantation  failure  [152],  pregnancy  loss  [153],  and  ovarian  atrophy  due  to  inhibition  of
folliculogenesis leading to atretic follicles and reduced ovulation and decreased numbers of CL [151, 154, 155]. It was
shown that exposure to MXC in adult mice selectively affects the antral follicles and induces atresia using the Bcl2/Bax
signaling pathway, without affecting the HPG axis [156].

In contrast, when the exposure periods included in utero and early postnatal development period, the effects lasted
into  adulthood  with  more  severe  outcomes  on  reproductive  parameters  in  rats.  These  included  acceleration  of  the
vaginal opening (sign of puberty), acceleration of the onset of the first estrus, irregular cycles with persistent vaginal
estrus, reduced pregnancy rate and litter size despite apparent mating, and early reproductive senescence [157 - 159].
Serum estradiol and progesterone levels were altered with increased FSH levels [158]. The effects on the ovary were
dramatic, with both folliculogenesis and ovulation being inhibited.

In a more recent study, female rats were treated during fetal and neonatal development (E19-PND 7) with a dose of
MXC that is comparable to the dose used in the above studies (100 mg/kg/day) the exposed females displayed similar
abnormalities in reproductive parameters as well as in ovarian morphology by adulthood [160]. A close examination of
follicle composition showed that developmental MXC treatment did not affect the total number of follicles or follicles
at  primary  and  secondary  stages  in  adult  females.  However,  the  number  of  preantral  and  early  antral  follicles  was
increased and the number of CL was reduced, with numerous large cystic follicles. Immunohistochemical staining and
quantification of expression patterns of important regulators of ovarian functions revealed that while LHR, CYP11A1,
and  CYP19A1  levels  were  reduced,  levels  of  AMH  and  AR  were  increased,  and  levels  of  StAR  and  ESR1  were
unchanged [160]. Especially noteworthy was that ESR2 level was unchanged in primary and secondary follicles, yet
decreased dramatically in peri-antral stage follicles, which are responsive to gonadotropins. These observations suggest
that hormone-responsive follicles are most affected by EDC exposure.

Epigenetic  analyses  using  bisulfite-sequencing  PCR  and  methylation-specific  PCR  showed  that  MXC  caused
hypermethylation in multiple CpGs in two CPG islands in ESR2 promoter sequences while it had no effect on DNA
methylation levels in the ESR1 promoter at PND 60 [24]. This finding correlates with the lack of significant effects on
the levels of ESR1 protein in the adult ovary [24, 160]. Further analysis has shown that the DNA methylation levels in
the promoter regions of these genes were unchanged in neonatal ovaries (PND 7) immediately after the exposure [25].
These data demonstrate the age-dependence/hormone responsiveness of the epigenetic changes, which has also been
shown in other tissues (e.g., uteri) with other compounds (e.g., DES, genistein) [161]. The global DNA methylation
analysis using AP-PCR showed that there were multiple loci that were hypermethylated in MXC-treated ovaries [24].
The majority of candidates were those encoding transcription factors or ribosomal proteins. One candidate that was
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shown to be hypermethylated in multiple MXC-treated samples was an endopeptidase encoded by PAPP-A locus [24].
Reduced PAPP-A activity due to increased methylation could limit its availability in follicles and thus increase IGFBP
content  and  sequester  IGF-1.  This  could  lead  to  the  observed  defect  in  follicle  selection  and  maturation  [160].
Interestingly, in the same set of studies, exposure to a low dose of MXC (20 μg/kg/day) caused a significant increase in
the expression of AMH [160] and multiple methylation events both in the ESR2 promoter sequences and the PAPP-A
locus [24]. There was a significant upregulation in ESR2 expression in the granulosa cells of multiple stages of follicles
at PND 7, similar to high-dose MXC-treated follicles. While these epigenetic alterations did not cause any functional
defects  in  the  low  dose-MXC  treated  females,  the  high  dose-MXC  treated  animals  had  the  characteristic  ovarian
dysfunction.  A  more  recent  targeted  genome-wide  methylation  array  study  has  revealed  that  members  of  essential
signaling  pathways  are  hypermethylated  and  their  gene  expression  down-regulated  in  MXC-treated  ovaries.  IGF-1
signaling was the most significantly affected pathway wherein several members of the family - Igf1r, insulin receptor
(Insr), Pik3r1, Hras, and Foxo3 - were hypermethylated [25]. These data suggested that the initial DNA methylation
patterns  were  representative  of  the  gene  expression  patterns  responsive  to  the  EDC  exposure  and  not  the  adult
hypermethylation  events.  Furthermore,  the  long-lasting  effects  observed  by  PND  60  could  be  due  to  histone
modifications. Unpublished data from our laboratory has shown that histone trimethylation, H3K9me3, an inhibitory
histone  mark,  is  increased  in  antral  follicles  of  MXC-treated  ovaries  suggesting  suppression  of  stage-specific  gene
expression thus disallowing antral follicle progression to ovulation.

Uterotrophic  effects  of  MXC  are  well  established  [162].  MXC  increases  uterine  wet  weight,  proliferation  and
protein secretion [163, 164]; these effects have been attributed to its estrogenic actions [152, 165 - 169]. In some cases,
MXC can  interfere  with  or  differ  from the  actions  of  estradiol  [151];  this  was  also  reported  in  other  experimental
systems [22, 170, 171]. More recently, it was shown that in vivo, neonatal MXC exposure inhibits Hoxa-10 expression
in the adult uterus in mice and interferes with the binding of estradiol to ERE of Hoxa-10 [172]. Although a potential
epigenetic mechanism was suggested, confirmation of this possibility awaits future studies [53].

3.5. Genistein

The use and consumption of soy products is ubiquitous. However the isoflavonoid phytoestrogen, genistein, derived
from soy products has been shown to have endocrine-disrupting potential in domestic species: newborn lambs born to
ewes fed clover had reproductive abnormalities (in the late 1940s [173]). United States FDA has approved 25g/day soy
consumption, approximately equivalent to 75 mg of isoflavones/day (1 mg/kg/day), as being beneficial against coronary
artery disease (FDA, 1999). However, a cause for concern is that babies who are fed soy formula consume on average
of 6-9 mg/kg body weight, which would result in babies being exposed to 4-7 times higher amounts of soy as compared
to adults that are on a soy-rich diet or as per FDA guidelines [174, 175]. Early life exposure to soy formula is associated
with a greater risk of uterine fibroids in adulthood among other conditions [176, 177].

3.6. Genistein in vivo Studies

Neonatal  administration  of  0.5-50  mg/kg  genistein  (PND1-PND5)  caused  an  increase  in  ano-genital  distance
(masculinization), accelerated puberty, and irregular estrous cycles in adult CD-1 mice [178]. In this context, genistein-
treated (50 mg/kg/d) mice exhibited defects in the ovary such as the MOF phenotype, which correlated with a reduction
in the number of apoptotic oocytes, previously shown to involve ESR2 mediated actions [48, 95, 96]. This was also
associated with fewer pups born to these females over their shortened reproductive lifespan [179, 180]. Genistein and
other phytoestrogens have been shown to readily cross the placenta [181] and exposure in utero between E15 and E19
has shown similar effects as mentioned above [182]. A most recent report on the oral administration of genistin (the
glycosylated form of genistein) revealed that exposure between PND1-5 also resulted in ovaries with MOFs, delayed
puberty, irregular estrous cycles and reduced litter sizes [183]. It has been demonstrated that the estrogenic action of
genistein is mediated via ER-mediated pathways [93, 184].

Numerous uterine defects have been documented in CD-1 mice that were neonatally exposed (PND1-5) to genistein
(50 mg/kg/day) [178, 185, 186] supporting epidemiological data from women who were soy-fed as babies that had
irregular menstrual cycle lengths and pain during cycles or uterine fibroids [176, 187]. A recent paper showed that the
oocytes are themselves competent for fertilization and early embryonic development, but the uteri are unable to support
viable implantations: the sites were smaller and fewer in number [188]. Another study has shown that genistein induces
fluid accumulation in the uterus in ovariectomized rats via ER signaling and the cystic fibrosis transmembrane regulator
[189]. These results not only confirm the effect of genistein as an EDC but also shed light on the mechanism of fluid
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retention, in this case, as a therapy for menopausal conditions.

Tang and colleagues recently investigated whether neonatal DES/genistein exposure could cause epigenetic changes
and alter gene expression in adult uteri and whether there are interactions between adult ovarian hormones and such
epigenetic  reprogramming.  CD-1 mice  were  exposed  to  DES (1  μg  and  1000 μg/kg)  or  genistein  (50  mg/kg)  from
PND1-5. Subsequently, some animals were sacrificed at PND19 while others were aged to 6 and 18 months with or
without  ovariectomies.  Genome-wide  methylation  analysis  was  conducted  with  MSRF  and  candidate  genes  were
identified.  Of  interest  was  the  nucleosomal  binding  protein  1  (Nsbp1),  which  was  shown  to  be  hypomethylated  at
PND19 and hypermethylated by puberty, in the control. Low-dose DES and genistein treated vs. high-dose DES-treated
animals had opposing methylation patterns. Furthermore, it was shown that in the aged animals, both DES and genistein
caused hypermethylation in the ovariectomized animals but remained hypomethylated in non-ovariectomized animals.
These data suggest that Nsbp1 is hypermethylated in intact mice with age and that DES and genistein have opposing
effects on the methylation patterns in intact vs. ovariectomized aging animals (hypomethylation vs. hypermethylation),
respectively. These studies highlighted the age-dependent aspect of epigenetic reprogramming and also its interaction
with steroid hormones [161].

3.7. Bisphenol A (BPA)

Bisphenol A is a high-volume plasticizer whose total worldwide production exceeds 6 million tons per year [190].
Used in the manufacture of polycarbonate plastics and epoxy resins, exposure can occur via plastic food containers
(especially  when  heated  or  microwaved),  food  and  drink  cans,  baby  bottles,  and  carbonless  paper (reviewed  in
[191, 192]). As a result, 95% of adults who were tested have detectable levels of BPA in their urine [193].

Infants in neonatal intensive care units have particularly high exposure to BPA, presumably from its use in medical
devices and from the migration of BPA into infant formula from the container. It has also been found in detectable
amounts in dust [193 - 196]. Urine BPA levels of women undergoing infertility treatment is negatively correlated with
the number and quality of eggs retrieved, and with serum E2 levels [197, 198]. BPA has been shown to have estrogenic
properties and that it can be transferred both lactationally and transplacentally [190, 199]. BPA has a lower binding
affinity  to  ERs  than  estradiol  or  DES  [94,  200].  A  major  concern  is  that  the  “safe”  exposure  limit  for  BPA  is  50
μg/kg/day but studies with lower doses than the “safe” dose demonstrated numerous detrimental defects in the female
reproductive system [190].

3.8. BPA in vivo Studies

Perinatal exposure to low environmentally relevant BPA doses (25-250 ng/kg) caused accelerated puberty, altered
estrous cyclicity and disrupted ovarian morphology associated with changes in body weight and LH levels [201 - 203].
An increased occurrence of ovarian cysts with blood filled bursae, abnormal numbers of antral follicles, and decreased
CL  was  found  in  aged  mice  that  were  neonatally  exposed  to  a  100  μg/kg  dose  of  BPA  [204].  Another  study
demonstrated  that  exposure  of  rats  to  50  μg/kg  and  50  mg/kg  doses  during  the  period  of  hypothalamic  neuronal
establishment (PND0-3), resulted in a reduction in CL and increase in MOF and hemorrhagic follicles confirming that
BPA has direct effects on the ovary that are independent of GnRH neuronal activity [205]. MOFs were also observed in
studies with neonatal BPA exposure (150 μg/kg dose), in mice [206].

Another effect of BPA is exerted at the level of oogenesis and is of very high concern [197]. Studies from Hunt and
colleagues demonstrated that BPA released from damaged animal cages and water bottles, which were inadvertently
treated with harsh alkaline detergent, induced defects in the meiotic prophase stage of oocyte development in mice:
oocytes had increased levels of meiotic aneuploidy due to congression failure. This effect was mimicked when cages
were intentionally damaged, or when 20 to 22 day old mice were exposed to a similar dose of BPA (20 ng/g body
weight) for as few as 7 days [207]. Further studies demonstrated that BPA caused defects in synapsis and recombination
in  the  homologous  chromosomes  in  the  fetal  ovary.  Interestingly,  βERKO  animals  exhibited  very  similar  meiotic
defects in the pachytene oocytes of their fetal gonads. In utero treatment of βERKO females with low doses of BPA did
not enhance the oocyte defects, suggesting that BPA could act via the ESR2 signaling pathway alongside other non-
genomic mechanisms [208]. In ArKO mice that were given BPA (0.1 or 1.0% w/w in chow), the ovarian expression of
IGF-I, IGF-I receptor, GDF9, and BMP-15 were increased to normal levels, an effect resembling that of ArKO mice
given estradiol replacement [209]. These authors further reported that BPA exerted “little effect” within ovarian and
other estradiol-dependent tissues of wild-type mice.

In  the  uterus,  neonatal  BPA  exposure  has  been  shown  to  cause  long-term  adverse  effects,  including  cystic



62   The Open Biotechnology Journal, 2016, Volume 10 Zama et al.

endometrial  hyperplasia,  as  well  as  the  occurrence  of  more  serious  uterine  pathologies  such  as  adenomyosis,
leiomyomas (fibroids),  atypical  hyperplasia,  and stromal  polyps [204].  Furthermore,  paraovarian cysts,  progressive
proliferative lesions of the oviduct, and cystic mesonephric (Wolffian) duct remnants in the uterus were found in the
BPA-treated mice after in utero exposure [210]. Similar defects were shown in in utero BPA-exposed mice (25 to 250
ng/kg), using Alzet osmotic pumps [203]. Vaginal wet weight was decreased and lamina propria of the endometrium
was decreased as well, with concomitant increase in glandular epithelial proliferation at 3 months of age. BPA caused
an increase in ESR1 and PR expression in the lumina typifying a hyper-estrogenic response of the uterus. It would be of
interest  to  examine  if  hypomethylation  is  associated  with  such  an  increase  in  gene  expression.  A  recent  study  by
Varayoud  and  colleagues  showed  that  in  an  ovarectomized,  neonatally  BPA  or  DES  exposed  mouse  model,
progesterone priming followed by estradiol treatment caused an impaired proliferative response and altered PR and
ESR1 expression in the sub-epithelial stroma of the uterus suggesting that the uteri were unable to respond to ovarian
steroids [211]. In addition, Hoxa-10 expression was decreased even though methylation of its promoter was unaffected.
Furthermore, an abnormal overexpression of the corepressor, silencing mediator for retinoic acid and thyroid hormone
receptor (SMRT), was found in the same stromal cells in which Hoxa-10 expression was reduced. Other epigenetic
analyses on BPA-treated uteri  from 2-6 week old mice after E9-E16 exposure to 5 mg/kg BPA were performed by
Bromer  et  al.  (2010).  They  demonstrated  a  decrease  in  DNA  methylation  of  the  promoter  and  intron  regions  of
Hoxa-10. This group also found that the hypomethylation allowed for increased ESR1 binding to the EREs present in
the Hoxa-10 promoter thereby allowing the uteri to become hyper-responsive to estrogen/BPA signaling [212].

3.9. Di-ethylhexyl phthalate (DEHP)

Phthalate  esters  are  ubiquitous  in  our  environment  and  used  as  plasticizers  to  give  flexibility  to  PVC-derived
plastics [213]. Di-ethylhexyl phthalate is one of the most widely used phthalate ester [214] and present in medical bags
and tubings, packaging, and food containers. It is non-covalently bound to plastics, and can leach out of these products,
resulting in potential daily human exposure in the range of 3-30 μg/kg/day [213]. In fact DEHP and its metabolites have
been found in breast milk, serum, amniotic fluids and sweat [215, 216] and recently in urine samples from mothers and
infants [217]. One the most vulnerable populations are infants in neonatal intensive care units or NICUs, whose daily
exposure reaches 22.6 mg/kg [213]. The developmental exposure to DEHP is of special concern. In humans, in utero
DEHP exposures were associated with shorter pregnancy duration [218] and a shortened anogenital distance (AGD) and
index in boys [219, 220]. Increased incidences of miscarriage were reported in women occupationally exposure to high
dose of phthalates [221]. Danish girls with high urinary concentration of phthalate metabolites, including DEHP show
delayed puberty [222].

3.10. DEHP and in vivo Studies

Animals  that  are  exposed to DEHP during adulthood and peripubertal  periods show adverse effects  in  multiple
reproductive parameters, such as estrous cyclicity, pubertal age, litter size, and alterations in serum hormone levels and
ovarian morphology [223 - 225]. Transient daily oral exposures to 2 g/kg of DEHP in female rats result in prolonged
estrous cycles, and delay or suppression in natural ovulation time resulting in reduced number of ovulations and hence
absence of CL. Suppressed serum levels of estradiol, progesterone, and LH were also found. The primary cause of these
disruptions appears to be the low levels of estradiol, insufficient to induce preovulatory LH surge [226, 227]. Studies
with  cultured  ovarian  follicles  suggest  that  DEHP  acts  via  its  more  active  metabolite  MEHP  and  inhibits  FSH-
stimulated cAMP production, thereby preventing activation of the enzymes for progesterone production, and suppresses
levels of Cyp19a1via activation of PPARs. Prolonged exposures to a lower dose (0.05mg/kg/day) of DEHP resulted in
reduced expression of Cyp17a1, Cyp19a1, progesterone receptor (Pgr), Lhcgr and Fshr in the adult ovary (PND41) of
the CD-1 mice, all  which may affect ovarian steroidogenesis [228].  Besides suppressed ovarian steroid production,
multiple studies have reported altered follicular dynamics as one of the major consequences of DEHP exposure. These
alterations include accelerated follicular recruitment and failure in follicular maturation and ovulation. Early postnatal
(PND  5-20)  exposure  in  mice  to  relatively  low  levels  of  DEHP  depletes  primordial  follicles  while  increasing  the
number secondary and antral follicles [229], which is associated with altered pattern of imprinted genes and increased
metaphase  II  spindle  abnormalities.  Follicular  dynamics  were  similarly  altered  in  adult  mice  that  were  transiently
(10-30 days) exposed to DEHP (200 µg/kg to 700 mg/kg), which was associated with dysregulation of PI3K signaling
pathway [234]. Studies have also suggested that DEHP exposure inhibits follicular maturation which may be a result of
the inhibition of antral follicle growth due to increased oxidative stress leading to increased apoptosis [230]. Most of the
studies  described  above  have  employed  extended  exposure  periods  and  larger  doses.  Therefore,  studies  with
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environmentally relevant doses of DEHP specifically targeting the fetal and neonatal ovarian development are needed.

In the uteri, exposures to DEHP during early pregnancy lead to adverse outcomes. Rats that were exposed to oral
DEHP (313 and 573 mg/kg/day) between E0-20 had reduced number of pups in their litters as well as decreased mean
pups weights. Similarly mice that were exposed to DEHP (0, 44, 91, 191, and 293 mg/kg/day) between E0-17 showed a
dose-dependent  increase  in  number  of  embryonic  resorptions  as  well  as  other  major  malformations,  including
cardiovascular malformation and skeletal defects with the two highest doses [231]. More recently, a shorter exposure to
DEHP (0, 250, 500, and 1000 mg/kg/day) during first 4 to 6 days of pregnancy, in mice, showed that the highest dose
leads  to  extensive  embryonic  resorption  at  the  end  of  exposure  period,  due  to  reduced  endometrial  receptivity
(characterized by insufficient decidualization), which is associated with an increase in ESR1, PR, and E-cadherin and
inhibition of MAPK and Nf-κB signaling pathways [232]. Interestingly, the DEHP exposure (405 mg/kg/day) between
E6 and PND 21, that resulted in increased antral follicular atresia, did not affect uterine luminal epithelial height [233].
The exact mechanisms of the adverse effects of DEHP on the uterus and embryo are not known, and require further
investigations. In addition, it is worth noting that the effects of DEHP are not likely mediated by estrogen receptor as
DEHP shows little or no uterotrophic effects in vivo, although DEHP binds to estrogen receptor.

CONCLUSION

There is a large amount of evidence that demonstrates the adverse effects of EDCs on female reproductive health.
Exposures in early ovarian and uterine developmental stages have irreversible, long-term effects on the reproductive
function  proving  that  developmental  reprogramming  occurs  after  EDC exposures.  Epigenetic  mechanisms  mediate
some of these EDC actions and comprehensive genome-wide studies are necessary to deduce the details.
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